Izbrane teme sodobne fizike in matematike
Teorija naključnih matrik (RMT) skuša razložiti raznovrstne lastnosti, še posebej statistiko lastnih vrednosti, velikih matrik, katerih elementi so naključne spremenljivke nekega verjetnostnega zakona. Omenjene matrike imenujemo ansambel naključnih matrik, najbolj poznani so trije klasični ansambli: Gaussov ortogonalni, Gaussov unitarni in Gaussov simplektični. Statistiko RMT najdemo v različnih vejah fizike in matematike, dobro opiše razmike pozicij nevtronskih resonanc, porazdelitev ničel Riemannove funkcije zeta, pa tudi razmike med prihodi avtobusov v mehiškem mestu Cuernavaca.
Random matrix theory (RMT) aims to provide understanding of diverse properties, mainly statistics of matrix eigenvalues, of large matrices with entries drawn randomly from various probability distributions traditionally referred to as the random matrix ensembles. Three classical random matrix ensembles are the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE) and the Gaussian Symplectic Ensemble (GSE). RMT has found applications in various branches of physics and mathematics; for instance, fluctuations in positions of compound nuclei resonances, distribution of zeros of the Riemann zeta function and also spacings between two subsequent buses in Cuernavaca are well described by the RMT statistics.