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A SIMPLE MODEL OF FLUID ABSORPTION IN THE GASTROINTESTINAL
SYSTEM
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In this article, we present a simple mathematical model for water absorption in the gastrointestinal tract. We
begin by developing models for nutrient transport across membranes, focusing on passive transport through diffusion
and active transport via the Na+/K+ ATPase mechanism. Building on these models, we then define water absorption
in greater detail. We analyse how variations in Na+ levels affect water absorption and examine the body’s adaptive
responses to dehydration.

ENOSTAVEN MODEL ABSORBCIJE TEKOČINE V PREBAVNEM TRAKU

V članku je predstavljen preprost matematični model absorpcije vode v prebavnem traktu. Na začetku razvijemo
modele za prenos hranil čez membrane, pri čemer se osredotočimo na pasivni transport skozi difuzijo in aktivni trans-
port prek mehanizma Na+/K+ ATPaze. Na teh modelih zgradimo podrobneǰsi opis absorpcije vode. Analiziramo,
kako različne količine Na+ vplivajo na absorpcijo vode ter preučujemo prilagoditvene odzive telesa na dehidracijo.

1. Structure of gastrointestinal tract

The gastrointestinal (GI) tract is a complex system responsible for the digestion and absorption of

nutrients. In its simplest form, the GI tract can be thought of as a long hollow tube with several key

layers and parts, as illustrated in Figure 1. The innermost part, known as the lumen, is the hollow

space within the GI tract through which food travels. Surrounding the lumen is the epithelium,

a layer of cells that play a crucial role in absorption and secretion. Beyond the epithelium lies

the mucosa, which includes the lamina propria - a connective tissue layer containing blood vessels,

nerves, and lymphatics that support nutrient absorption and immune defence. This is followed by

the muscularis mucosa, a thin layer of muscle that helps move the mucosa. Next is the submucosa,

a thicker layer of connective tissue housing larger blood vessels, lymphatics, and nerves. The outer

muscular layer, known as the muscularis externa, is responsible for the peristaltic movements that

propel food along the GI tract. This structure is summarized from the detailed description presented

in Chapter 18 of Ref. [1].

Figure 1. Structure of the GI tract, reproduced from Ref. [2]
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In the context of the gastrointestinal tract, the interstitium is the space containing interstitial

fluid, located between cells and blood vessels. In Figure 2, the interstitium is not explicitly labelled.

However, it is located in the connective tissue components of the gastrointestinal wall.

The primary functions of the gastrointestinal system include fluid absorption, propelling food

down the tract, and protecting the body from harmful substances. Fluid absorption is a particu-

larly vital function, ensuring that the body retains necessary water and nutrients. This process is

enhanced by numerous small folds called villi which increase the surface area for absorption.

In this article, we construct a simple mathematical model of water absorption form the ingested

liquids into the body. We consider a very simplified structure of the GI tract consisting of only three

components: the lumen, the epithelial cells, and the interstitium, as illustrated in the Figure 2. In

general, the epithelial cells are not permeable to water on their lumenal side. However, there are

0.7–1.5 nm pores through the tight junctions between epithelial cells that permit water to diffuse

readily between the lumen and the interstitium.

Figure 2. Simplified structure of GI tract, reproduced from Ref. [1]

Absorption of water through these pores is driven primarily by the Na+ gradient between the

lumen and the interstitium. This gradient is created in several stages. In the first stage the

concentration of Na+ ions is high in the lumen primarily due to the nutrients and electrolytes that

are present in the ingested food and fluids. Meanwhile the concentration is low in the epithelial cells

which allows Na+ to be transported passively with diffusion from the lumen to epithelium (move

from a region of high concentration to a region of low concentration).

In the second stage Na+ is transported actively by a Na+ - K+ ATPase from the epithelium to

the interstitium. The active transport needs energy, in our case the ATP, to transport Na+ against

the gradient. Although the concentration of Na+ in the interstitium is not necessary higher than

that in the cells, active transport is needed to maintain a low intracellular concentration of Na+ in

epithelial cells. This then allows the first stage to happen again after the second stage is completed.

In the third stage, the concentration of Na+ is higher in the interstitium then in the lumen. The

flow of water through tight junctions is then driven by the osmotic pressure difference between the

lumen and the interstitium.

In the last stage the Na+ ions together with transported water in the interstitial fluid diffuse
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into the capillaries due to the concentration gradient and are carried away by the bloodstream.

In the following we present a model of the passive and active transport. We will then use these

models to describe the water transport in our system.

2. Passive transport

In this section we analyse the passive transport of chemicals with diffusion. We follow Chapter 2.2

in Ref. [1]. Assume that we have some chemical species U. The conservation law describes the

change of U in a region Ω:

rate of change of U = rate of production of U + accumulation of U due to transport

Mathematically, we can write this law as:

d

dt

∫
Ω
u dV =

∫
Ω
f dV −

∫
∂Ω

J⃗ · n⃗ dA, (1)

where u is the concentration of chemical species U, f the production density of U per unit volume,

J⃗ the flux density vector of U and n⃗ the unit normal vector pointing outward of the boundary ∂Ω.

Note that if J⃗ · n⃗ < 0 (J⃗ · n⃗ > 0), then U is flowing into (out of) the area Ω respectively.

Using the divergence theorem, we can reformulate Equation (1) to

d

dt

∫
Ω
u dV =

∫
Ω
f dV −

∫
Ω
∇J⃗ dV (2)

=

∫
Ω
(f −∇J⃗) dV. (3)

Assume that u is continuously differentiable. Then Equation (3) simplifies further:∫
Ω

d

dt
u dV =

∫
Ω
(f −∇J⃗) dV (4)

⇒ d

dt
u

a.e.
= f −∇J⃗ dV. (5)

If we assume that both hand sides are continuous, we can drop the a.e. (”almost everywhere”) and

get the so-called conservation equation

d

dt
u = f −∇J⃗ dV. (6)

Next we formulate Fick’s first law. A steeper gradient indicates a larger difference in concen-

tration over a small distance, therefore it is intuitively reasonable and also found experimentally,

that it results in a greater flux. Moreover, the flow of substances is from high to low concentration

regions. Taking all these observations into account Fick’s first law reads the following.

Theorem 1 (Fick’s first law). Fick’s first law of diffusion states that the flux J⃗ of solute through a

membrane is proportional to the concentration gradient across the membrane

J⃗ = −D∇u, (7)

where D is the diffusion coefficient and u is the concentration of the solute.

Combining the conservation equation and Fick’s first law we get the reaction-diffusion equation

that reads
∂u

∂t
= D∇2u+ f. (8)
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Next we would like to derive an analogue of this equation that describes diffusion through a

membrane. Suppose that a membrane separates two large reservoirs of a dilute chemical, with

concentration cl on the left (at x = 0), and concentration cr on the right (at x = L). Assume that

there is no production of U (f = 0). The diffusion equation (in one dimension) then reads

∂c

∂t
= D

∂2c

∂x2
, (9)

with boundary conditions c(0, t) = cl and c(L, t) = cr.

For simplification we observe the steady state solution (∂c∂t = 0), so that −D ∂2c
∂x2 = 0. It follows

that c(x) = ax+ b, for some constants a and b. After applying the boundary conditions, we get

c(x) = cl + (cr − cl)
x

L
. (10)

From Fick’s first law it follows that

J =
D

L
(cl − cr). (11)

The ratio D
L is called permeability and it is the effective resistance of the membrane.

3. Active transport

In this section we analyse the Na+ transport through a membrane of epithelial cells using the Na+

/ K+ ATPase, also known as sodium-potassium pump. The Na+/K+-ATPase is an enzyme found

in the plasma membrane that allows the Na+ ions to travel against the gradient. To analyse its

behaviour, we first have to develop some basic theory about enzyme kinetics.

3.1 The law of mass action

We start with the fundamental law of reaction kinetics, also known as the law of mass action. We

consider a very simple irreversible reaction, where two reactants A and B form a product C:

A + B
k−→ C,

where k is the so called reaction rate that will be defined precisely below.

Let [A], [B] and [C] be the concentrations of A, B and C, respectively. We assume that the

change of product in time corresponds to the number of collisions (encounters of molecules) between

molecules A and B, multiplied by the probability that reaction happens in case of a collision.

The expected number of collisions per unit time is taken to be proportional to the product of

the concentrations of A and B, with an appropriate factor r1. Let r2 be a fraction of these collisions

that lead to a reaction. Therefore, the change of concentration of C over time is defined as:

d[C]

dt
= r1[A][B] · r2 = k[A][B],

where k = r1r2. This equation is the so-called law of mass action.

Similarly, we find the equations for concentrations of A and B:

d[A]

dt
= −k[A][B]

d[B]

dt
= −k[A][B].
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For thermodynamic reasons all reactions proceed in both directions. If one direction is really

slow we neglect it and proceed as above. Let us now define the law of mass action for the reversible

reaction. We consider the reaction

A+B
k+−−⇀↽−−
k−

C,

with k+ and k− denoting the forward and reverse rate constants of reaction, respectively.

Since the concentration of A decreases with the forward reaction (A is consumed) and increases

with the reverse reaction (A is produced), the rate of change of [A] reads:

d[A]

dt
= k−[C]− k+[A][B].

Simmilarly,

d[B]

dt
= k−[C]− k+[A][B]

d[C]

dt
= k+[A][B]− k−[C].

3.2 Enzyme kinetics

In Section 3.1 we focus on simple reactions where all reactants are fully converted into products and

thus consumed in the process. However, a different scenario emerges when enzymes are involved.

Enzymes act as catalysts in biochemical reactions, meaning that they facilitate these reactions

without being consumed or altered themselves. They ”take” a substrate molecule and convert

it into a product. Unlike chemical reaction kinetics, enzyme kinetics exhibit the phenomenon of

saturation. At very high substrate concentrations, the reaction rate reaches a maximum value, vmax,

beyond which it cannot increase. In this section we follow Section 5.1.3 in Ref. [3].

Enzymes (E) function as biocatalysts by forming a complex (C) with their substrate (S), in which

the product (P) is generated. This process can be written with the following chemical reaction

E + S
k1−−⇀↽−−
k−1

C
k2−→ E + P.

In many cases, it is practically impossible to retrieve the original substrate from the product,

therefore we write the second reaction as irreversible. The rate constants k1 and k−1 represent the

association and dissociation rates of the enzyme-substrate complex, respectively.

In the following we define the following variables:

s = [S], e = [E], c = [C], p = [P].

Now, following the law of mass action we can write the following system of differential equations

ds

dt
= k−1c− k1se,

de

dt
= k−1c+ k2c− k1se,

dc

dt
= k1se− k−1c− k2c,

dp

dt
= k2c.

Since there is only substrate and the enzyme present at the beginning of the reaction, the initial

conditions are

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0.
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To simplify the system, we neglect the last equation for a moment and observe that d
dt(e+c) = 0,

therefore e+ c = e0. Using this observation the system reduces to:

ds

dt
= −k1se0 + (k1s+ k−1)c, (12)

dc

dt
= k1se0 − (k1s+ k−1 + k2)c. (13)

Next, we nondimensionalise the system by introducing the following dimensionless variables:

τ = (k1e0)t, u(τ) = s(t)/s0, v(τ) = c(t)/e0,

λ =
k2
k1s0

, K =
k−1 + k2
k1s0

=
Km

s0
ϵ =

e0
s0

.

Hence, Equation (12) rewrites as:

d

dτ
u(τ) =

d

dτ

s(t)

s0
=

1

s0

ds(t)

dt

dt

dτ
(14)

=
1

s0

1

k1e0
[−k1se0 + (k1s+ k−1)c] (15)

= − s

s0
+

1

e0

sc

s0
+

k−1

k1

c

s0e0
(16)

= −u(τ) + u(τ)v(τ) + (K − λ)v(τ) (17)

= −u+ (u+K − λ) (18)

and Equation (13)
d

dτ
v(τ) =

1

ϵ
[u− (u+K)v], (19)

with initial conditions u(0) = s(0)
s0

= 1 and v(0) = c(0)
e0

= 0.

In biochemical reactions there is usually much less enzyme than substrate present, therefore

ϵ = e0
s0

≪ 1. This means that there are two processes on two different time scales: the process of v

is very fast in comparison to the one of u. If we rewrite Equation (19) as ϵ dvdτ = (u− (u+K)v) and

send ϵ → ∞, we can solve the right hand side for u:

v =
u

u+K
.

This means that when ϵ is very small, v lies on the manifold u
u+K , which we name slow manifold

and is plotted in Figure 3. To see how the solution travels on this manifold, we insert v = u
u+K in

Equation (18):
du

dτ
= −u+ (u+K − λ)

u

u+K
= − λu

u+K
,

which is negative for u > 0. Therefore, the solution travels down the manifold, as seen in Figure 3.

To analyse the system even further, we introduce a new variable τ̂ = 1
ϵ τ , which transforms the

system to

du

dt
= ϵ(−u+ (u+K − λ)v),

dv

dt
= u− (u+K)v.

Taking ϵ → 0 results u being constant, u(τ̂) = u0, and
dv
dt = u0 − (u0 +K)v, which is solvable. The

solution reads:

v(τ̂) =
u0

u0 +K
+ v0e

−(u0+K)τ̂ .
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For large times

lim
τ̂→∞

v(τ̂) =
u0

u0 +K
.

This means that for a small ϵ the variable u is constant and v eventually settles on the slow manifold,

as seen in Figure 3.

Figure 3. Slow manifold, reproduced from Ref. [3]

From this we can conclude that the formation of the complexes C (here represented with the

variable v) tends quickly to the equilibrium, while the substrate S (represented with u) almost does

not change. Then the substrate is converted along the slow manifold into the product until it is

used up.

This behaviour allows us to use v = u
u+K as a good app roximation. Since our main interest is

to express the rate of product formation V := dp
dt , we use this aproximation and substitute back to

the original variables

V =
dp

dt
= k2c = e0k2v = e0k2

u

u+K
= e0k2

s
s0

s
s0

+K s
s0

= vmax
s

Km + s
.

This equation is called the Michaelis–Menten law.

3.3 Hill equation and application to the Na+/K+ ATPase

For enzymes with cooperative binding sites, the Michaelis–Menten equation can be generalized

using the Hill equation. The Hill equation is particularly useful for describing enzymes with multiple

binding sites that exhibit cooperative interactions. The formulation of the Hill equation is explained

in more detail in Section 1.4.4 in Ref. [1]. In the Hill equation, the rate of product formation V is

given by

V =
vmax[S]

n

Kn
m + [S]n

where n is the Hill coefficient, indicating the degree of cooperativity among the binding sites. For

the Na+/K+ ATPase, which typically binds three Na+ ions cooperatively, we can set n = 3.

However, instead of focusing on the formation of a product, we are interested in the rate at which

Na+ ions are transported through the membrane by the Na+/K+ ATPase. The Na+/K+ ATPase

transports Na+ ions from the cytoplasm to the extracellular space which is a crucial process for

maintaining cellular ion gradients. The rate of Na+ ion transport, JNa, can be defined analogously

to the rate of product formation in enzyme kinetics. Hence, we adapt our Hill equation to describe
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this transport rate:

JNa =
Jmax[Na

+]3

K3
m + [Na+]3

,

where JNa is the rate of Na+ ion transport, Jmax is the maximum rate of Na+ ion transport when

the Na+/K+ ATPase is fully saturated with Na+, [Na+] is the concentration of Na+ ions in the

cytoplasm, and Km is the apparent Michaelis constant for Na+ binding.

This equation highlights the cooperative nature of Na+ binding to the Na+/K+ ATPase, where

the binding of one Na+ ion increases the affinity of the enzyme for additional Na+ ions, facilitating

efficient transport. The Hill coefficient n = 3 indicates a strong cooperative interaction among the

three Na+ binding sites on the enzyme.

4. A simple model of water absorption

With the models of passive and active transport developed in the previous sections, we now develop

a model of water transport.

Figure 4. Flows of Na+ and water and concentrations in different parts of the GI structure, reproduced from Ref. [1]

We suppose that the Na+ concentration is nl in the lumen, ni in the interior of the cells, and

that the concentration of all osmolites in the interstitium is n. Let J denote the flow of Na+ from

the lumen to the interior of the cells. The transport is passive, therefore, we follow the model defined

in Section 2:

J = g(ni − nl), (20)

where g is permeability of the membrane. In steady state, the conservation of Na+ implies that the

flow from the lumen into the cells is equal to the flow from the cells to the interstitium. Therefore

J = f(ni), (21)

where f(n) = Jmaxn3

N3+n3 is the function defined in section 3.3, where N = Km.

With q we define the flow of water through the tight junctions which is driven by the osmotic

pressure difference between the lumen and the interstitium. Therefore

Rq = n− nl, (22)

where R is the resistance of the tight junctions.
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Next, we assume that capillary flow provides a movement of fluid into and out of the interstitium.

The incoming fluid has a flow rate of Q and a concentration of osmolites n0, whereas the outgoing

fluid carries osmolites at a flow rate of Q + q with a concentration of n. The conservation of Na+

again implies that the flow of incoming fluid from the cell to the interstitium (active transport)

is equal to the difference between the outflow of osmolites and influx of fluid with the capillaries.

Therefore

(Q+ q)n−Qn0 = f(ni). (23)

If we express n from Equation (22) and plug it into Equation (23), we get

Rq2 + (RQ+ nl)q +Q(nl − n0)− f(ni) = 0 (24)

Then we nondimensionalize this problem by scaling all concentrations by N , setting uj =
nj

N for

i ∈ {l, i, 0} and y = q
Q , so Equation (24) reads

RQ2y2 + (RQ+Nul)Qy +Q(Nul −Nu0)−
JmaxN

3u3i
N3 +N3u3i

= 0, (25)

where the last term is evaluated function f at Nui. In the next step we divide Equation (25) with

NQ,
RQ

N
y2 + (

RQ

N
+ ul)y + (ul − u0)−

Jmax

NQ

u3i
1 + u3i

= 0. (26)

We now define the following variables: ρ = RQ
N , β = Jmax

gN , γ = g
Q and F (u) = u3

1+u3 . Equation (26)

now reads

ρy2 + (ρ+ ul)y + (ul − u0)− γβF (ui) = 0.

Since f is a positive, monotone increasing function, we can express nl with ni uniquely, from

Equation (20) and (21),

nl = ni +
1

g
f(ni).

With the new rescaled variables this reads

ul = ui + βF (ui) (27)

Finally, we define κ = ui − u0 + (1 − γ)βF (ui). Together with Equation (27) the final form of

Equation (24) reads:

ρy2 + (ρ+ ul)y + κ = 0. (28)

The main goal of this article is to analyse the water absorption q, now rescaled and denoted by

y. Therefore, we try to solve Equation (28) for y as a function of ul. The easiest way to do so is to

view the solution as the curve y = y(ui), ul = ul(ui), parameterized by ui, since ul is determined

by ui from Equation (27).

We observe that Equation (28) is a quadratic polynomial in y. Its roots are y1 =
−ρ−ul−

√
D

2ρ and

y2 = −ρ−ul+
√
D

2ρ , with D = (ρ + ul)
2 − 4ρκ. We observe that y1 is always negative, therefore it is

not biologically relevant, whereas y2 is positive if and only if κ < 0.

To analyse the root y2, we first delve into the behaviour of κ(ui) = ui − u0 − (γ − 1)βF (ui) as a

function of ui. The behaviour of greatest interest occurs when β(γ − 1) ≫ 1. Under this condition

κ is negative at the origin ui = 0. The derivative reads

κ′(ui) = 1− β(γ − 1)
u2i

(1 + u3i )
2
.
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Note that for small ui the derivative is positive and therefore κ increases. After that it becomes

negative, so κ decreases, however for large ui the fraction in the derivative becomes small,

lim
ui→∞

u2i
(1 + u3i )

2
= lim

ui→∞

2ui
6(1 + u3i )u

2
i

= 0,

resulting the increase of κ again. Therefore, assuming that β(γ − 1) ≫ 1, κ becomes an N-shaped

function of ui, as seen in Figure 5.

Figure 5. Sketch of κ as a N-shaped function

This N-shaped behaviour of κ translates to a N-shaped behaviour for the positive root y2(ui) =

y2(κ(ui)) of Equation (28). Since y2 is a monotonically decreasing function of κ, the N-shape will

invert, since when κ increases y2 decreases, as seen in Figure 6. Specifically, with ul = ul(ui) = 0, the

root y2 is positive. As ul changes, this root initially decreases to a minimum value, then increases to

a maximum value, and ultimately decreases again, becoming negative. This behaviour is illustrated

in figure 6, using concrete parameter values ρ = 1, u0 = 1, β = 1, and γ = 10.

Figure 6. Flux of water through the epithelial membrane plotted as a function of luminal Na+ concentration, repro-
duced from Ref. [3]

This finding has a very interesting application. It suggests that the absorption of water can

be optimized by adjusting the sodium (Na+) level in the luminal water. Consequently, hydration

is more efficient with electrolyte-containing fluids compared to pure water. However, an excessive
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amount of Na+ can have the adverse effect of dehydrating the interstitium. This is a localized effect

since water is reabsorbed further along the tract.

When a person becomes dehydrated the adrenal glands release a lot of aldosterone. This hormone

helps epithelial cells transport more Na+ by increasing the production of channel and pump proteins.

This boosts both the passive and active transport of Na+. Over time, a person can adapt to

heavy exercise in hot weather. This adaptation happens because, over several weeks, the increased

aldosterone secretion from the adrenal cortex reduces excessive Na+ loss in sweat, so the person

does not need extra dietary Na+. However, losing K+ can still be a problem.

In this model, aldosterone’s effect can be shown by increasing g (the conductivity of Na+ trans-

port) and/or Jmax (the maximum rate of active Na+ pumping). It’s clear that the total Na+ flux

J = f(ni) and the water flux q both increase if either g or Jmax go up. But this increase has limits.

When g becomes very large, ni gets close to nl, making

lim
g→∞

J = f(nl)

and

lim
g→∞

q = Q(
n0

nl
− 1) +

f(nl)

nl

when R = 0. So, when a person is dehydrated, aldosterone helps increase Na+ absorption and

reduce water loss.

5. Conclusion

This paper presented a mathematical model to describe water absorption in the gastrointestinal (GI)

tract, emphasizing the role of passive and active transport mechanisms, particularly the sodium

(Na+) gradients. The findings highlight how varying Na+ levels can either enhance or inhibit

water absorption, suggesting that electrolyte-containing fluids are more effective for hydration. For

those interested in a deeper understanding of the biological background behind these processes, the

chapter on intestinal water and electrolyte transport by Chang and Leung [4] provides valuable

additional context and detail.
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