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In this paper, the topology of world lines is connected to basic statistic rules of elementary particles, and the
possibility of anyons with intriguing statistical properties in two-dimensional worlds is discussed. Quantum spin
liquids, characterized by an absence of local order parameter and fractionalized spin degrees of freedom, are presented
as a candidate, where quasiparticle excitations in the form of anyons could occur. The exactly solvable Kitaev spin
model on a honeycomb lattice, which predicts an emergence of a spin liquid ground state, is analysed in detail. Firstly,
the physical background of frustrated bond-directional interactions is explored and the spin degrees of freedom are
rewritten using Majorana fermions. The fractionalization of spins into static gauge fluxes and mobile Majorana
fermions, forming two types of excitations, can be exploited as a signature of a spin liquid behaviour in experimental
realizations of the Kitaev model. Lastly, measurements of specific heat and dependence of the spin excitation gap on
the external magnetic field in the Kitaev material α-RuCl3 are shown as experimental results that support theoretical
predictions of spin fractionalization.

ANYONI V MODELU KITAEVA

V članku je predstavljena zveza med topologijo svetovnic v prostor-času ter statističnimi pravili elementarnih
delcev. V dvodimenzionalnih sistemih drugačne topološke lastnosti svetovnic omogočajo pojav anyonov s posebn-
imi statističnimi lastnostmi. Teoretični modeli kvantnih spinskih tekočin, za katere je značilna odsotnost lokalnega
ureditvenega parametra, napovedujejo možnost pojava kvazi-delčnih vzbuditev z anyonsko statistiko. V članku je
podrobneje predstavljen analitično rešljiv model Kitaeva na satovju, ki ima lastnosti kvantnih spinskih tekočin. Sprva
je opisano fizikalno ozadje anizotropnih usmerjenih interakcij med spini, ki izvirajo iz specifične geometrije kristalne
rešetke, z vpeljavo Majoranovih fermionov pa so nadomeščene originalne spinske prostostne stopnje. Frakcionalizacija
spinskih prostostnih stopenj v dve različni vrsti vzbuditev je temeljni pokazatelj fizike kvantnih spinskih tekočin v
eksperimentalnih realizacijah modela Kitaeva. Nazadnje so prikazane meritve specifične toplote ter odvisnosti ek-
sitacijske reže od zunanjega magnetnega polja v materialu α-RuCl3, ki se skladajo s teoretičnimi napovedi spinske
frakcionalizacije.

1. Introduction

It is remarkable how properties of elementary particles can be traced back to indistinguishability and

topology of motion in space-time [1]. Both these basic principles are responsible for all elementary

particles in our three-dimensional world being either fermions or bosons. One would expect the

same for systems in fewer dimensions, however, the topology in two dimensions is richer, allowing

particles called anyons, which obey intriguing statistical properties intermediate between bosons

and fermions.

Material science presents an insightful new playground, in which exotic new particles are being

realized in the form of quasiparticle excitations. Particularly interesting are systems of entangled

spins coupled with frustrating exchange interactions, where magnetic order is absent down to zero

temperature. Such states are called quantum spin liquids and have gained a lot of attention from

experimental physicists, who are striving to observe signs of quasiparticle excitations in real physical

systems. Quantum spin liquids can exhibit fractionalization of the spin degrees of freedom into

quasiparticle excitations with interesting statistics. The ground spin liquid state is profoundly

different from conventional magnetically ordered ground states, since it has no magnetic order,

even though the spins are strongly interacting. The absence of the local order parameter makes

spin liquids even harder to observe in experiment. The Kitaev honeycomb model, discussed in this

paper, is one of few exactly solved 2D models that predict a quantum spin liquid ground state. The

system is predicted to host a Z2 gauge field and Majorana fermions, both corresponding to different

types of excitations. A Majorana fermion has an interesting property that it is its own antiparticle,
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whereas the excitations of the Z2 gauge field obey anyonic statistics. Recent advances in preparation

of two-dimensional samples have enabled researchers to find signatures of two types of quasiparticle

excitations in the Kitaev material α-RuCl3 [2]. The search for a solid-state realization of the Kitaev

honeycomb model is driven by a potential application in quantum computing technologies and

deeply inspired by the fundamental pursuit of spin liquid materials as well as the experimental

discovery of Majorana fermions.

2. Anyons and topology of space-time

Quantum statistics of a system of indistinguishable particles refers to the topology of world lines

in space-time, which is profoundly different for systems with fewer spatial dimensions. Every per-

mutation of indistinguishable particles should represent the same state of a many body system and

should not change any physical observable [3]. When introducing anyonic particles, we shall focus

on the case of Abelian anyons, where an interchange of any two particles in the system ψ1 ↔ ψ2

causes the wave function to acquire only a global phase factor eiθ, which does not result in any

measurable difference.

|ψ1〉1 |ψ2〉2 = eiθ |ψ2〉1 |ψ1〉2 . (1)

In three spatial dimensions, there is only one topologically distinct way to swap two particles. Two

consecutive swaps are equivalent to the identity transformation, allowing only two possible values

of the phase factor eiθ = ±1. Thus, elementary particles in three dimensions are either fermions,

whose phase factor is −1, or bosons, whose phase factor is +1. The phase factor −1 takes care

that fermions obey the Pauli exclusion principle, which forbids two fermions from being in the same

quantum state at the same time (Figure 1).

Figure 1. The wave function of the final state of two indistinguishable particles at points C and D must include
contributions from every possible motion connecting the starting positions to the end points. The options fall into
two topologically distinct classes; the way we combine the two contributions either by adding or subtracting gives us
bosons (+) or fermions (−) (Reproduced from [1]).

Anyons, first hypothesised by Wilczek [1], are particularly intriguing particles, since they exhibit

quantum statistics intermediate between bosons and fermions, where the phase θ upon exchange

can take any value, hence the name anyon. Such intermediate statistics is possible only for indistin-

guishable particles in two dimensions. In a world of two spatial dimensions, the topology of pairs

(or larger groups) of world lines becomes much richer than in worlds of three or more spatial dimen-

sions. The reason is closely connected to a basic feature of knots, which cannot form in more than

three dimensions [1]. In mathematics, a knot is just a closed continuous curve in space. Untangling

a knot requires points on the curve, labelled with numbers on interval [0, 1), to flow continuously

to points on a circle with the corresponding number. Obstructions in unravelling might arise when

different parts of the knot come to intersect, however, in four or more dimensions we can always

move two strands past one another. In a two-dimensional system with three-dimensional space-time

world lines of particles can produce an infinite number of topologically distinct trajectories that

could in principle lead to any value of the phase θ (Figure 2).
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Figure 2. One particle exchange is followed by another resulting in double exchange (left) which is not topologically
equivalent to identity (right) in three-dimensional space-time. The two paths can wind up around one another and
cannot be unravelled by continuous motion (Reproduced from [1]).

Even more exotic properties emerge when interchanging non-Abelian anyons, where braiding

(exchanging) two anyonic particles acts as a unitary transformation within a multidimensional

degenerate Hilbert subspace. The resulting wave function cannot be connected to the initial one

just by a global phase factor. Since anyonic statistics is possible only in two dimensions, the quest of

finding anyons turned towards material science, where exotic new particles are being realized in the

form of quasiparticle excitations of electrons in quantum materials [4]. A well known example of a

quasiparticle excitation in ordered (anti)ferromagnetic spin systems are magnons that obey bosonic

statistics. Consequently, magnons exhibit quite different properties than spins. Every spin flip is

decomposed into linear combination of stable quasiparticles (magnons) that retain their identity

even when they propagate [5]. Especially interesting are quasiparticle excitations in states of highly

entangled electrons, where electrons are not confined in place by any bonds as in solids, but are still

correlated due to quantum entanglement as opposed to electron gas. Excitations formed in these

systems are quasiparticles that can even possess anyonic properties [1]. First example that suggested

such a behaviour was found in fractional quantum Hall fluid [6], where electrons, confined to a two-

dimensional layer, are taken to extremely low temperatures and subjected to large magnetic fields.

The emergent quasiparticle excitations in those liquids typically behave like one-third of an electron;

they carry one third of its charge and exhibit one third of fermion statistics. Their amplitude for

interchange will be multiplied by a phase factor eiπ/3 [1]. Unfortunately, experimental measurements

of anyonic quasiparticles in such systems suffer from many practical obstacles. It might in principle

be easier to observe them in materials called quantum spin liquids, where the electrons remain static

and their spin dynamics defines the physics [4].

3. Quantum spin liquids

Quantum spin liquids can be formed by interacting spins and offer a significantly different behaviour

than typical magnetic materials. Spin liquids lie between ordinary magnets (spin solids), in which

the directions of spins are rigidly aligned, and paramagnets (spin gases), in which the spin ori-

entations are almost completely independent of one another. Spins in typical magnetic materials

experience a disordered state at higher temperatures and begin to align into ordered patterns (do-

mains, stripes etc.) at lower temperatures [5]. In contrast, a quantum spin liquid is characterized by

an absence of magnetic long-range order (although interactions and correlations are strong) down to

zero temperature as well as by their long-range quantum entanglement and fractionalized excitations

of the spin degrees of freedom [7].

3.1 Frustration in magnetic systems

Spin liquid states are predicted to occur in frustrated magnetic systems. Frustration in magnetic

systems arises in the case of competing exchange interactions, whose energies cannot be minimized

at the same time. Frustration may occur as a consequence of the spin lattice geometry, the simplest

example being an antiferromagnetic system on a two dimensional triangular lattice. We call this
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phenomenon geometric frustration and is common in spin systems on pyrochlore, kagome or trian-

gular lattices [2]. On the other hand, the discussed Kitaev model on a honeycomb lattice (Figure

3) exhibits exchange frustration as a result of bond-directional interactions [8], where the exchange

easy-axis of Ising-like interactions differs depending on the orientation of the bond between the

spins. The geometry of the honeycomb lattice is bipartite, since it can be divided into two sublat-

tices where sites on either of the sublattices interact only with sites in the other sublattice [5]. For

example, if all the interactions between spins shared the same exchange easy-axis, there would be

no magnetic frustration on a honeycomb lattice.
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Figure 3. (a) A bipartite honeycomb lattice of spins is constructed by two equivalent sublattices a and b with
primitive vectors ~a1 and ~a2. The unit cell is depicted by a red rhombus. The bonds between the nearest neighbouring
spins are divided into three types each with a different exchange coupling Jα and exchange easy-axis. (b) An
elementary hexagonal plaquette Bp with a particular enumeration of the sites used in definition (3).

3.2 Resonating valence bond state

First theoretical construction of a spin liquid originates from the resonating valence bond theory of

frustrated antiferromagnets, proposed by Anderson in 1973 [9]. In order to construct a ground state

with zero magnetic moment in a system with antiferromagnetic interactions, two electron spins can

be joined to form a spin singlet 1√
2

(|↑↓〉 − |↓↑〉). If every spin in the system is bound in a singlet,

the state of the system as a whole has zero spin and no magnetic order. Static configuration of

spin singlets is called a valence bond solid (Figure 4.a). However, coupling of spins in a particular

distribution of singlets breaks the lattice symmetry and possesses no long-range entanglement that

is predicted in the spin liquid states [7]. To preserve the symmetry, a superposition of many different

partitionings of spins into singlets is used to construct the ground state, known as the resonating

valence bond state, which can support some exotic excitations; one example is the spinon excitation

(Figure 4.b), which is created when a spin is not paired in a valence bond pair. The spinon possesses

no electric charge and obeys fermionic statistics. A spinon can move by rearranging nearby valence

bonds at low energy cost [10].

(a) (b)

Figure 4. (a) Valence bond solid on a geometrically frustrated triangular lattice with antiferromagnetic exchange
interaction. (b) Excitation of a spinon can propagate through a valence bond solid simply by rearrangements of
singlet pairs.
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4. Kitaev Model

The Kitaev spin model, consisting of a network of spins on a honeycomb lattice (Figure 3), represents

an exactly solvable frustrated spin system with the exact quantum spin liquid ground state. As we

shall see, the original spin degrees of freedom σi fractionalize into propagating quasiparticles, which

turn out to behave as Majorana fermions, and a static Z2 gauge field. The spin liquid state also

possesses no magnetic order, however, the entanglement of spins spreads through the entire network

of spins. A detailed derivation of the model was presented in a seminal work by Alexei Kitaev in

2006 [11]. He studied a system of N spins 1/2 located at vertices of a honeycomb lattice. The

interaction between two neighbouring spins is Ising-like, σαi σ
α
j , however, the exchange easy axis α

and the magnitude of the interaction Jα depend on the spatial orientation of the exchange bond.

The Hamiltonian is as follows:

H = − Jx
∑

x−links
σxi σ

x
j − Jy

∑
y−links

σyi σ
y
j − Jz

∑
z−links

σzi σ
z
j . (2)

4.1 Physical background of the Kitaev interaction

Bond-directional Ising interactions that result in spin liquid behaviour in the Kitaev honeycomb

model are caused by interacting j = 1/2 spins in Mott insulators. Mott insulators are materials with

strong interactions between electrons, which create an energy gap failed to be correctly described

by conventional band theories that predict a partially filled valence band [12]. Such states are

usually formed in transition-metal oxides with partially filled d4 or d5 orbitals, where an interplay

of crystal-field effects, strong spin-orbit coupling and electron interactions leads to coupled j = 1/2

spin transition-metal ions [8]. Microscopic origins of bond-directional exchange interactions were

pioneered by Jackeli and Khaliullin [13], who studied exchange interactions between IrO6 octahedra.

The exchange interaction between neighbouring magnetic moments of Ir4+ ions depends on the

geometric orientation of the neighbouring octahedra (Figure 5).

(a)

Isotropic Heisenberg interaction
J ~Si · ~Sj

(b)

Bond-directional interaction
Jγ S

γ
i · S

γ
j

(c)

Configuration of six IrO6 octahedra,
forming a honeycomb lattice.

Figure 5. Possible geometric orientations of neighbouring IrO6 octahedra that give rise to different types of (domi-
nant) exchange interactions between the magnetic moments located on the iridium ion at the centre of the octahedra.
(a) For the corner-sharing geometry one finds a dominant symmetric Heisenberg exchange. (b) For the edge-sharing
geometry one finds a dominant bond-directional, Kitaev-type exchange. (c) Edge sharing octahedra can be config-
ured so that their centres (transition metal ions) form a honeycomb lattice. The planes (red, orange and blue rhombi)
spanned by different types of exchange paths α (red, orange and blue lines) are perpendicular to one another.
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The edge sharing configuration has two exchange paths between neighbouring iridium ions re-

sulting in a destructive interference of the isotropic Heisenberg exchange between coupled j = 1/2

states. The bond-directionality of the coupling arises, because the two linked d orbitals of the Irid-

ium ions in neighbouring octahedra depend on the directionality of the edge, shared by the two

octahedra. The corresponding exchange easy-axis α of the Ising interaction σαi σ
α
j is perpendicular

to the plane spanned by the two exchange paths [8]. Apart from the pure Kitaev interaction, other

non-trivial couplings in the system may cause realistic systems to still exhibit magnetic ordering

at sufficiently low temperatures. However, the system becomes a conventional paramagnet only at

significantly higher temperatures than the onset of the ordered phase, indicating an intermediate

phase without any magnetic order but with short-range spin correlations [2].

4.2 Conserved quantities of the model

Before transforming the spin model into a system of interacting Majorana fermions, we observe the

presence of a large number of conserved quantities. For each hexagon (Figure 3) we can define a

plaquette operator Bp, which commutes with the Hamiltonian (2):

Bp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , [Bp, H] = 0, [Bp, Bq] = 0. (3)

The fact B2
p = 1 also implies that eigenvalues of Bp are ±1 [14].

4.3 Majorana fermions

Fermionic or bosonic field operators are commonly used to express the spin 1/2 algebra of a 2N

dimensional Hilbert space in a Hamiltonian [3]. Kitaev [11] used a fermionisation procedure where

Pauli matrices are expressed via Majorana operators. Each fermionic mode k is usually described

by a creation operator a†k and an annihilation operator ak. Instead, one can use their linear combi-

nations:

ck,1 = ak + a†k, ck,2 =
1

i

(
ak − a†k

)
, (4)

which are called Majorana operators, since they obey the following relations:

c†i = ci, {ci, cj} = 2δi,j , (5)

making each Majorana particle a fermion that is its own antiparticle. Each spin on the site j

is represented by four Majorana operators cj , c
x
j , cyj , c

z
j (Figure 6), which are defined by linear

combinations (4) using two fermionic modes a
(1)
j , a

(2)
j . By representing each spin with four Majorana

operators, we have expanded the Hilbert space from a 2N dimensional space to the extended space

M with dimension 2N ·2N = 4N . Actual physical spin states occupy only a subspace of the extended

space of four Majorana fermions per site [11]. We use the following definition:

σ̃xj = icxj cj , σ̃yj = icyj cj , σ̃zj = iczjcj , (6)

to define the Pauli operators in the extended space [11]. A state |Ψ〉 belongs to the physical subspace

P ⊂ M, only if the operator Dj (7), with eignevalues ±1, acts on the state |Ψ〉 consistently with

Pauli matrices σxj σ
y
j σ

z
j = i [11].

iDj = icxj c
y
j c
z
jcj = σ̃xj σ̃

y
j σ̃

z
j , (Dj)

2 = 1. (7)

Consequently, a state |Ψ〉 in the physical subspace P must be an eigenstate of all Dj with eigenvalue

+1: Dj |Ψ〉 = |Ψ〉. For every state |Ψ〉 in the extended space M one can obtain the corresponding

physical state |Ψ〉phy = P |Ψ〉 by applying the projection operator P =
∏
j
1+Dj

2 . One can show
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that the Pauli operators defined with Majorana modes (6) preserve the commutation relation for

Pauli matrices only on the physical subspace |Ψ〉 ∈ P [11]:[
σ̃αj , σ̃

β
j

]
|Ψ〉 = 2i εαβγ σ̃

γ
j |Ψ〉 . (8)

We combine two Majorana operators on neighbouring sites to define the Z2 gauge field operators

uαij [11]:

uαij = icαi,ac
α
j,b,

(
uαij
)2

= 1, (9)

where index a and b denote the sublattice and α ∈ {x, y, z} denotes the bond type. The Hamiltonian

(2) is rewritten in quadratic form in Majorana operators ck:

H = Jx
∑

x−links
uxij i ci,acj,b + Jy

∑
y−links

uyij i ci,acj,b + Jz
∑

z−links
uzij i ci,acj,b. (10)

The field operators uαij represent conserved quantities with eigenvalues ±1, since they commute with

the Hamiltonian and with each other [11]:[
uαij , H

]
= 0,

[
uαij , u

β
ij

]
= 0. (11)

(a) (b)

Figure 6. (a) Graphical representation of spin operators σi with four flavours of Majorana fermions, which are
recombined into statical Z2 gauge fields uαij and itinerant Majorana fermions ci,a(b) . (b) Phase diagram of the Kitaev
model, plotted for a plane Jx + Jy + Jz = const. If one of the couplings dominates, a gapped spin liquid is formed.
Around isotropic coupling strengths, a gapless spin liquid state is formed (Majorana metal) [8].

In the original Hamiltonian (2), there are no conserved quantities associated directly with bonds,

only the plaquette operators Bp represent physical observables and can be expressed by a product

of six gauge field operators uαij , one for each bond (i, j)α, along the boundary of the hexagon ∂Bp:

Bp =
∏

(i,j)α∈∂Bp

uαij . (12)

Operators uαij are called gauge fields, since there are many distinct choices of their eigenvalues that

yield the same configurations of plaquettes Bp = ±1. The energy of the system does not directly

depend on uαij , rather it is related to distribution of plaquettes [11]. For every unique distribution

of gauge fields uαij we have to solve a slightly different, but profoundly simplified Hamiltonian (10),

which has been the initial goal of introducing Majorana operators.
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4.4 Ground state and energy spectrum

Every distinct distribution of plaquette eigenvalues yields different energies of the quadratic Majo-

rana Hamiltonian (10). It turns out that uniform distribution of plaquettes Bp = 1 yields a global

minimum of the energy spectrum [11]. Setting all uαij = 1 is one of many choices of gauge fields

that yield the uniform distribution. The corresponding Hamiltonian is translational invariant and

can be diagonalized by Fourier transformation ci,a(b) → c~k,a(b) in momentum representation ~k [11].

The diagonalised Hamiltonian has the form:

H =
1

4

∑
~k∈BZ

ε~k

(
α†~k
α~k − β

†
~k
β~k

)
, ε~k = 2

∣∣∣Jz + Jxe
−i~k· ~n1 + Jye

−i~k· ~n2

∣∣∣ , ~n1,2 = ±1

2
~ex +

√
3

2
~ey,

(13)

where the sum goes over the first Brillouin zone ~k ∈ BZ [11]. The energy ε~k is associated with

new quasiparticle field operators α~k and β~k, introduced by unitary transformation of momentum

Majorana operators c~k,a(b) [11].

(a) (b)
Gapless spectrum: Jx = Jy = Jz = 1

αk
βk

Gapped spectrum: Jx = Jy = 1, Jz = 2.2

αk
βk

Figure 7. (a) Dispersion relation ε~k of the gapless spin liquid state, depicted in the first Brillouin zone (red hexagon).
The energy gap vanishes at six vertices of the Brillouin zone, where the dispersion is linear. Green arrows denote unit

vectors ~n1,2 = ± 1
2
~ex +

√
3

2
~ey used in dispersion relation (13). (b) Dispersion relation for the gapless phase (above)

and for the gapped phase (below), where the dispersion is quadratic near minima.

The spin liquid ground state is obtained by filling all the negative energy states β~k with quasi-

particles. The energy spectrum can be either gapped or not depending on the parameters Jα of

the dispersion relation ε~k (Figure 7). The spectrum is gapless, if ε~k = 0 for some ~k ∈ BZ. This

is possible only if all the triangle inequalities for exchange couplings |Jα| ≤ |Jβ| + |Jγ | hold (see

Figure 6). The excitations of Kitaev spin liquid can be divided into Z2 flux excitations, triggered by

changing the uniform distribution of plaquettes Bp = 1 in the ground state, and excitations of the

itinerant Majorana fermions. The magnitude of these two types of excitations differ and are excited

at different temperatures, which was also observed experimentally in Kitaev materials [2]. In the

gapless phase, the low energy excitations are itinerant Majorana fermions, whereas in the gapped

phase the low energy excitations correspond to Z2 flux excitations, which turn out to behave as

Abelian anyons. In fact, one can explicitly map the gapped phase of the Honeycomb model to the

famous Toric code model of spins on the square lattice [15], which is known to host three different

types of deconfined anyonic excitations; charge e excitations, vortex m excitations and combined
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fermionic ε = e × m excitations. They are characterized by special braiding rules when they are

interchanged; e and m anyons obey bosonic statistics in respect to themselves and the ε anyon

obeys fermionic statistics. However, if we move one e excitation in a loop around an m excitation,

the wavefunction acquires an additional −1 phase factor [15]. Both models lead to similar physics,

however, the Honeycomb model has much more potential to be experimentally realized, since the

quartic spin interactions in the Toric code model are very unlikely to appear in a real physical

system. The gapless phase also acquires an energy gap when exposed to the external magnetic field;

the emergent quasiparticle excitations are even more exotic non-Abelian anyons, which correspond

to a multi-dimensional representation of the braid group [11].

4.5 Order parameter and spin correlations

We can combine two Majorana fermions forming a gauge field uαij to define a bond fermion operator

η(ij),α, used to express spin operators σi [14]:

η(ij),α = cαi,a + icαj,b, σαi,a = i
(
η(ij),α + η†(ij),α

)
ci,a, σαj,b = i

(
η(ij),α − η

†
(ij),α

)
cj,b. (14)

A spin operator σαi (6) creates a Majorana fermion ci and affects the α bond with the nearest

neighbour σαj , changing the occupation number of the bond fermion η(ij),α, which is expressed by

creation of two Z2 fluxes at adjacent plaquettes. We say that the original spin degree of freedom

fracitonalizes into Majorana fermion and two static Z2 fluxes [11] (Figure 8).

Figure 8. Fractionalization of a spin into two static Z2 fluxes and a dynamic itinerant Majorana fermion. We apply
σzi to the state with zero flux |ψ〉GS , creating a Majorana fermion at site i and two fluxes at the plaquette sharing

bond. By propagating the initial spin flip in time with time-evolution operator e−iHt/~ we get a linear combination
of states with fixed Z2 fluxes and dynamic Majorana fermions at any lattice site j [11].

Two states with different configurations of bond fermions (plaquette fluxes) are mutually or-

thogonal [11]. A state obtained by the action of a spin operator on the ground state is orthogonal

to the ground state, hence all the expectation values 〈σαi 〉 = 0 are zero. Consequently, there is no

magnetization Mα = 1
N

∑
i 〈σαi 〉 in the spin-liquid ground state. The physics of the Kitaev model

in the spin liquid ground state has some similarities with antiferromagnetic states and valence bond

solids formed by spin singlets, however, is fundamentally different:

1. The antiferromagnetic state also exhibits zero magnetization MAFM = 0, however, the expec-

tation value of the spin operator at any given site 〈σαi 〉 is not zero as opposed to the Kitaev

model.

2. In the valence bond solid all expectation values of spin operators are zero due to formation of

spins in singlet pairs, however, the Kitaev spin liquid exhibits different two-spin correlations

Sαij =
〈
σαi σ

α
j

〉
. In the ground state of the Kitaev model only neighbouring spins are correlated,
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since the pair of fluxes, created by the first spin σαj , must be annihilated by the second spin

σαi to obtain a non-zero expectation value. In the valence bond solid only spins, belonging

to the same singlet pair, are correlated, whereas any two spins in different singlets yield zero

correlation [11].

5. Experimental realization of the Kitaev model

Quantum spin liquid states of matter are very difficult to detect experimentally, because they lack a

local order parameter to which common experimental probes could couple directly. While long-range

entanglement is not easily accessible by experiment, the fractionalization of the fundamental spin

degrees of freedom could potentially be detected by means of thermodynamic and spin structure

factor measurements [16]. Candidates for the experimental realizations of the Kitaev model were

initially sought in honeycomb iridates Li2IrO3 and Na2IrO3, since they possess the characteristic

bond-directional exchange interactions. However, due to strong structural distortions in iridates,

other non-Kitaev interactions become significant, causing the magnetism to be dominated by anti-

ferromagnetic ordering [2]. More promising candidate for the Kitaev spin liquid is a van der Waals

material α-RuCl3, consisting of weakly coupled honeycomb layers. These systems host predomi-

nantly bond-directional isotropic (Jx = Jy = Jz) Kitaev interactions. Significant advances in the

synthesis of α-RuCl3 crystals have enabled Sungdae Ji and collaborators [2] to experimentally ob-

serve signs of spin fractionalization. Their findings are based on specific heat measurements, which

are supported from results of inelastic neutron scattering, used to determine the dynamic struc-

ture factor [2]. The measured temperature dependence of the magnetic specific heat CM unveils

a two-stage release of magnetic entropy SM that suggests an existence of two types of excitations;

localized Z2 fluxes and itinerant Majorana fermions, which are thermally activated at different tem-

peratures. Below TN = 6.5 K, non-vanishing interlayer couplings in α-RuCl3 cause the spins to

order in an antiferromagnetic structure. Despite theoretical predictions, absence of magnetic order

was not observed when approaching T = 0 K [16]. A suggested physical interpretation of the phase

diagram for α-RuCl3 is shown in Figure 9.

Figure 9. (Left) At very low temperatures T < TL, but above the transition temperature TN to the magnetically
ordered state, only low-energy itinerant Majorana fermions (green circles) are thermally activated, whereas the static
Z2 fluxes remain frozen in uniform configuration (Bp = 1), forming a quantum spin liquid state. (Middle) Upon
increasing the temperature across TL, the Z2 fluxes (Bp = −1) begin to form along with localized Majorana fermions
(orange ovals) on the bonds, forming a Kitaev paramagnet. (Right) Finally, above the high temperature crossover
TH , the system becomes a conventional paramagnet [2].
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Figure 10. (a) Phase diagram of α-RuCl3 showing the extent of the
magnetically ordered antiferromagnetic phase as a function of tempera-
ture T and the effective magnetic field Bab. The effect of any external
field can be namely reduced to an action of the effective magnetic field
within the plane of the sample. (Reproduced from [17].) (b) Spin exci-
tation gap ∆ as a function of the effective magnetic field Bab follows the
theoretically predicted cubic growth and reproduces the initial two-flux
gap ∆0 at zero field. (Reproduced from [17].) (c) Magnetic susceptibility
χ(T ), specific heat CM and magnetic entropy SM as a function of tem-
perature T . Entropy release is decomposed into two components that are
activated at different temperatures and correspond to itinerant fermions
(TH) and Z2 fluxes (TL). (Reproduced from [2].)

(c)

Signatures of spin fracitonalization were seen in measurements of the magnetic susceptibility

χ(T ), specific heat CM and magnetic entropy SM =
∫
CM/T dT (Figure 10.c). Especially the two

stage release of the magnetic entropy signifies two types of excitations in the system, however, the

low-temperature spin liquid phase is obscured by formation of antiferromagnetic order. Some Z2

flux excitations of the uniform configuration are already formed at temperatures slightly above TN .

Anomalies of the susceptibility and a sharp peak of CM indicate a phase transition at TN , where

the system orders antiferromagnetically. In the intermediate region CM has a linear T -dependence,

reflecting the metallic behaviour of itinerant Majorana fermions. Another peak was detected at TH ,

where conventional paramagnetic phase is formed [2]. Another indication of spin fracitonalization

is an energy gap ∆0 created by a spin flip, which is accompanied by creation of a pair of fluxes.

In the external field B, the gapless phase also acquires a gap, which is predicted to grow with

the third power of the field B (Figure 10.b). Field dependence of the spin excitation gap ∆ is

determined by the spin-lattice relaxation time measured using nuclear magnetic resonance [17].

The ordered antiferromagnetic phase in α-RuCl3 disappears when we apply a significantly strong

external magnetic field that overwhelms the additional anisotropic exchange couplings between

spins, which give rise to the ordering at lower magnetic fields [17] (Figure 10.a).

6. Conclusion

Frustrated magnetic systems governed by strong fluctuations present an interesting playground,

where new exotic quasiparticle excitations might be found. The Kitaev spin model is especially

remarkable, since it can be theoretically solved and predicts a quantum spin liquid ground state

as well as fractionalization of spin degrees of freedom into Majorana fermions and static Z2 gauge

fluxes. Furthermore, the flux excitations in the gapped phase and excitations in the presence of

the external magnetic field even obey anyonic statistics. Experimentalists have been pursuing signs

of fractionalization and exotic quasiparticle excitations in a variety of condensed-matter systems.
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The main benefit of the discussed Kitaev material α-RuCl3 is the fact that spin fractionalization is

observed in a broad temperature range, whereas in fractional quantum Hall effect it was seen only

at extremely low temperatures and for certain field values [17]. The discussed Majorana fermions

were also observed as excitations in thermal quantum Hall effect [18]. Basic feature of anyons in 2D,

which distinguishes them from more familiar quasiparticles, is their memory of knotted world lines

in space-time. The knotted topology makes anyons very stable in a wide temperature range, since

they are extremely resistant to distortions from the environment. Many-anyon systems could build

up a stable collective memory, which can serve as a platform for topological quantum computing.

Computing with anyons could exploit their ability to map their knotted histories into (observable)

quantum-mechanical amplitudes [1]. In the external magnetic field, the Kitaev honeycomb model

hosts non-Abelian anyonic excitations with potential applications in quantum computing. Moreover,

experimental observations of fractionalized excitations in α-RuCl3 suggest that a good solid-state

realization of the Kitaev model, with little distortions from other non-Kitaev interactions, has been

found.
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