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Galaxy clusters, the largest known virialized objects in the universe, are known to be triaxial. In this paper the
triaxiality of simulated galaxy clusters and its correlation with elongation, mass, dynamical state and evolution with
time are presented.

Zoomed-in simulations of five different regions of a larger box were used. The projected simulated clusters are in
good agreement with observations. A relation between average 2D ratio of semi-axes and maximal elongation of 3D
clusters was then established, and using this a theoretical limiting value for cluster maximal elongation was found.

In the second part the relation between rate of interaction of the cluster (its dynamical state) and its elongation
was studied, confirming the findings by other authors. Since more massive clusters are frequently in interaction, they
are on average more elongated. There is a clear trend of clusters getting on average more elongated with time. A
weak correlation between time evolution of elongation and cluster final mass was found, more massive clusters are on
average getting more elongated with time, while smaller clusters are getting more spherical.

POVEZAVA MED PODOLGOVATOSTJO JAT GALAKSIJ IN OSTALIMI LASTNOSTMI

Jate galaksij so največje znane strukture v vesolju, za katere velja virialni teorem. Njihova pomembna značilnost
je oblika, znano je namreč, da imajo obliko elipsoida (ki ima vse tri osi različno dolge). V tem članku je predstavljena
povezava med obliko in maso, stopnjo dinamike in obnašanjem v času.

S pomočjo zoom-in simulacij petih različnih podobmočij je pokazano, da se podatki iz simulacij zelo dobro uje-
majo z opazovalnimi podatki. Mogoče je določiti povezavo med povprečnim 2D razmerjem polosi ter maksimalno
podolgovatostjo v 3D. S pomočjo znanih podatkov se tako da določiti omejitev za podolgovatost jate v 3D, ki se zelo
dobro ujema s podatki iz simulacij.

Rezultati potrjujejo izsledke drugih avtorjev, da so jate v trku bolj podolgovate. Prav tako so tudi masivneǰse
jate v povprečju bolj podolgovate. V povprečju jate postajajo s časom bolj podolgovate, s tem da tu igra pomembno
vlogo masa jate. Masivneǰse jate namreč postajajo v povprečju bolj podolgovate s časom, medtem ko manj masivne
jate postajajo bolj sferične.

1. Introduction

Galaxy clusters are the largest known virialized objects in the universe. Therefore they are very

useful probes to study cosmological parameters. We can use the data to determine whether the

universe formed hierarchically or not. Modern observations support the hierarchic model of structure

formation but there is still much work to be done in this field. Furthermore, there is not much known

about dark matter and dark energy, and galaxy clusters are one of the rare probes that allow us to

study such open questions in cosmology.

Galaxy clusters are largely dominated by dark matter, while around 10% of their mass is in

the form of an ionized plasma (ICM - intracluster medium) and a few percent in the form of stars

and galaxies. Galaxies and gas in clusters are normally studied using Sunyaev-Zeldovich effect or

gravitational lensing or X-rays coming from central parts of galaxy cluster. Usually all these data

is combined to get a better picture of a single galaxy cluster.

Despite many authors still assuming sphericity for simplicity, galaxy clusters are known to be

triaxial objects (see [1] for a review). Throughout history there were different attempts to study

the shape of astronomical objects. One of the first was related to galaxies. Hubble in 1926 tried to

determine the frequency of galaxies with given ellipticity, assuming they are randomly oriented in

the sky. Many authors also assume that clusters are either prolate or oblate. Prolate clusters are
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elongated at the poles, as opposed to oblate ones that are flattened at the poles. [2] for example

reports preferred prolate shapes in a sample of 25 observed clusters. Statistical methods were used

for different astronomical objects, with the result that prolate-like objects are more frequently found

on larger scales.

In this short paper we present the comparison between our projections of spheroids and real

observational data. We also establish a relation between average 2D elongation of a projected

ellipse and the maximal 3D elongation. Then we investigate how cluster elongation is connected

with cluster’s mass, how clusters evolve with time and how interaction between galaxy clusters

influences their shape. This is the first time this specific simulations (described below) are used to

determine the shape of simulated galaxy clusters.

Why the shape of galaxy clusters is important can be seen in this example. Precision astronomy

and precision cosmology rely on the accurate determination of galaxy cluster masses. Masses are

important when we want to trace the formation of cosmic structure and its evolution. However,

galaxy cluster masses are not a directly observable quantity. Measured quantities (such as surface

brightness, gas density, gas temperature etc.) are extracted from 2D images of a galaxy cluster and

under some reasonable assumptions (e.g. sphericity, hydrostatic equilibrium) turned into full 3D

information. The underlying assumptions strongly depend on the cluster’s intrinsic shape and its

orientation. As reported by [2] (see also references therein), if clusters are elongated along the line

of sight their computed masses will be higher with respect to their true masses. A simultaneous

analysis of galaxy cluster data in different wavelengths (see [2]) is useful to obtain a coherent 3D

result. This kind of detailed observations require however a large amount of observing time on very

different facilities (X-ray telescopes, radio telescopes etc.) and are not feasible for a large amount

of clusters, especially for the distant ones, that are not well resolved in images.

2. Simulations

We used simulations described in [3]. The complete set of simulations used in previous papers is

composed of 29 hydrodynamic zoom-in regions that evolve in a ΛCDM cosmology with parameters:

Ωm = 0.24, Ωb = 0.037, ns = 0.96, σ8 = 0.8 and H0 = 72 km s−1 Mpc−1. Ωm is the matter

density parameter, Ωb barion density parameter, ns primordial spectral index, σ8 is the amplitude

of the power spectrum of the density fluctuations, and H0 is the Hubble constant. At first the

regions are extracted from a larger dark matter only simulation, then the regions are zoomed-

in and re-simulated using baryons and at a greater resolution. The simulations are carried out

with the code GADGET-3 (see [4]). For the hydrodynamic description an updated formulation of

SPH (Smoothed-particle hydrodynamics) is used including higher-order interpolation kernels and

derivative operators, and advanced formulations for artificial viscosity and thermal diffusion. For

the analysis we are presenting in this paper, we limited our sample of regions to five regions (D1, D5,

D6, D9 and D22). All the regions were simulated including gas cooling, formation of new stars and

active galactic nuclei (AGN) feedback from supermassive black holes (SMBH). The AGN feedback

is modelled as thermal feedback that includes mechanical outflows and radiation. The transition

between the radio and quasar feedback mode is accomplished by modelling gas accretion rate and

SMBH mass appropriately (see [5]).

In each of the five selected regions we obtained 30 clusters with masses above 3 · 1012M�/h,

where h is dimensionless Hubble constant defined with an expression H0 = 100 h km s1 Mpc1.

2.1 SUBFIND

We used an algorithm called SUBFIND to determine the locations and sizes of galaxy clusters. In

the beginning the algorithm extracts overdense, self-bound particle groups within a larger parent
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group. At first a local estimate of the density at the positions of all particles is made. All overdense

regions are considered to be substructure candidates. After defining substructures based on spatial

distribution of particles, the algorithm eliminates particles with positive energy, so that only bound

particles remain. If more than a minimum number of particles remain we reclaim it as subhalo.

Subhalo centre is defined as the position of the most bound particle. Note that one particle can be

a member of several groups. For more details see [6].

3. Methodology

The aim of our research was to determine the shape of galaxy clusters and their projections onto a

2D plane in order to compare them with simulated data. We used simulated data for dark matter to

determine the properties of halos of galaxy clusters. We assumed that galaxy clusters are ellipsoids,

which is a good approximation for dark matter halos, but not necessarily for the distribution of gas

and galaxies.

In order to get data for a single cluster we extracted the data from a sphere of a virial radius

centered on the clusters found previously in SUBFIND in our simulation. Then we computed the

semi-axes of the cluster ellipsoid.

3.1 Determining the semiaxes of ellipsoid

As in [7], we determined the semi-axes as follows. We arrange a matrix:

M =
∑
i

 x2i xiyi xizi
xiyi y2i yizi
xizi yizi z2i


where we count values for every particle. Eigenvalues of this matrix are proportional to the square

of the semi-axies of the ellipsoid.

3.2 Projection of 3D ellipsoid onto a plane

We have an ellipsoid with semi-axes a : b : c and a plane through coordinate origin with a normal

vector ~n = (n1, n2, n3). Since we are interested only in the average ratio of semi-axes, we can,

without loss of generality, assume that our ellipsoid is aligned with the coordinate system (i.e.

eigenvectors are parallel to coordinate axes). So it satisfies the equation:(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1,

We will now project the ellipsoid onto a plane. It is known that projection onto every plane can be

written as:

~v − (~v · ~n)~n = Proj (~v) = (X,Y, Z)

where ~v is a vector that we project and ~n the normal unit vector of the plane. Since ~v lies on an

ellipsoid, we can write it as follows:

~v =

(
x, y,

√
1−

(x
a

)2
−
(y
b

)2)
.

Note that the third coordinate of the vector could also have a negative sign, but for our analysis,

we will now consider only the plus sign. Later we will just reflect the solution over the origin of the
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coordinate system. Thus we got an ellipse in 3D space. We will multiply the vector by the matrix:

A−1 =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 cos(ψ) 0 sin(ψ)
0 1 0

− sin(ψ) 0 cos(ψ)

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 =

cos(ψ) cos(θ) 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 =


n3n2

1+n2
2

n2
1+n22

n1n2(n3−1)
n2
1+n22

−n1
n1n2(n3−1)
n2
1+n22

n3n2
2+n2

1

n2
1+n22

−n2
n1 n2 n3

 .
Thus we rotate it to an ellipse in x-y plane, where we got angles φ, θ and ψ using evaluation. For

every point we calculate its distance r to coordinate origin. It reads:

r = |~r| =
√
X2 + Y 2,

so we just forget the Z component. We can easily find the most distant point (from the coordinate

origin) using any of the maximization methods. Using coordinates of the most distant point we can

determine the angle ϕ (see Figure 1), and notice that semi-minor axis is just at angle 90◦ + ϕ.

Figure 1. Ellipse, centered on the origin of x and y axes and rotated by an angle ϕ.

With this method we calculate the ratio of semi-axes for each of the selected cluster in our

simulated regions:

R =
r(ϕ)

r(ϕ+ 90◦)
.

4. Results

4.1 Distribution of clusters according to their elongation

The distribution of clusters according to their elongation is shown in Figure 2. We denoted axes by

a, b, c from the longest to the shortest axis. As an indicator of elongation, we took ratios b/a and

c/a. Note that b is always greater that c (this is why all of the clusters are located in the bottom

part, below the line of equality).

We can see that the majority of clusters are not perfectly spherical. They instead have a

maximum distribution at semi-axes ratios of around 0.9. We also notice that there are some clusters

with an extreme ratio of axes (i.e. 0.2). Further analysis shows these are in most cases massive
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Figure 2. Distribution of elongation in simulated galaxy clusters. As an indicator of elongation we use the ratios
between the semiaxes b/a and c/a. Color represents the fraction of clusters with certain ratio, extending from yellow
(maximal) to dark blue (minimal). The meaning of a red line will be explained later (see chapter 4.3), it represents
the maximal elongation determined using Figure 5.

Figure 3. An example of an elongated galaxy cluster that is in a merger. These clusters are usually massive clusters
in the middle of zoomed-in areas.

clusters (see Figure 6). Such galaxy clusters grow by merging with other clusters and have a high

interaction rate, therefore, in most cases, their elongation is the result of a recent merger. There is

an example of such a cluster in Figure 3.

4.2 Comparing projected clusters to observational data

Simulated galaxy clusters were projected onto a plane using the method described in section 3.2.

Then we compared the projected data with observations obtained from [8]. Authors of the paper

used the data of 25 different galaxy clusters to compare the X-ray, lensing and SZE (Sunyaev-

Zeldovich effect) morphological properties. Since the data using these three methods are in good

agreement with each other, they represent a robust observational data. The comparison between

simulated and observational data is shown in Figure 4. We see that there is a good agreement

between the two. However, there are no observed clusters with axes ratio less than 0.6. The reason

for this may lie in the different sample (observations were conducted only on high mass clusters),

the observable part (observations include only the innermost radius, not the virial one) and on how
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Figure 4. Comparison of observational data with simulated projected galaxy clusters. Observational data from [8]
are reported for 25 massive clusters, while in simulations we selected 30 clusters with masses above 3 · 1012M�/h and
projected them onto every plane.

the clusters look in observations with respect to simulations. In observations we see two separated

cores when looking in i.e. X-ray, while they have the same outer part when observing dark matter

distribution in simulations, since it is known that dark matter halos are much larger than the

observable inner part of the clusters.

Figure 5. Numerical relation between maximal elongation of 3D ellipsoid and average ratio of projected axes in 2D.
Blue line represents the value of average projected ratio estimated from projected simulated data - 1.26 ± 0.05, and
the corresponding value of maximal allowed elongation in 3D - 0.46 ± 0.06.

4.3 Correlation between the maximal ratio of axes of 3D ellipsoid and the average ratio of semi-axes
of 2D ellipse

We studied the correlation between the maximal ratio of semi-major and semi-minor axes of a 3D

ellipsoid and the average ratio of semi-axes for a 2D projected ellipse. We projected 3D ellipsoids

onto a plane as described in section 3.2. We averaged over all planes and all ratios of semi-axes up

to a certain maximal ratio of semi-major (a) and semi-minor (c) axes. Thus we got a numerical

relation between above variables (see Figure 5). In other words, we assumed Heaviside distribution,

so that there is uniform cluster probability density up to a certain value and probability density 0

everywhere else. We got the average value of ratio of axes of 1.26± 0.05 from simulated data. Then

from this graph it follows that a value of 0.46± 0.06 is the limit for maximal elongation in 3D.

We tested it for the average ratio of semi-axes of 2D ellipse obtained from projected data from

simulations. We found that there is a surprisingly good agreement with simulated data for maximal

ratio of axes of 3D ellipsoid (see the red line in Figure 2). There seems to exist a sharp limit under

which clusters are located. This limit represents the maximal allowed elongation.
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However, there are clusters below this limit. We can argue that these galaxy clusters are not in

equilibrium, since more elongated clusters are more likely to be in interaction (see chapter 4.5).

4.4 Correlation between mass and elongation

We found a weak correlation between mass and elongation (see Figure 6). We can see that more

massive clusters are on average more elongated. As elongation we took the ratio c/a, where a, b, c

are semi-axes with decreasing values. For cluster mass we used the virial mass.

This correlation can be explained by massive clusters are more likely being in merger with other

clusters and thus looking more elongated during or after a merger (see section 4.5).

Our findings about the connection between mass and elongation are consistent with [9]. The

authors researched investigated the influence of the dynamical state and the formation history on

both the morphology and local connectivity of about 2400 groups and clusters of galaxies from the

large hydrodynamical simulation IllustrisTNG at z=0, where they found that massive halos are

significantly more elliptical and more connected to the cosmic web than low-mass ones.

Figure 6. Connection between mass and elongation. From above graph we can conclude that the more massive clusters
are more elongated than the less massive ones.

4.5 Correlation between interaction and elongation

We also tried to determine whether there exists a relation between elongation of galaxy clusters

and their dynamical state (whether they have recently merged or interacted). As an indicator of

interaction between galaxy clusters we used the separation between the center of the cluster (defined

as the minimum of the potential) and the center of the most massive galaxy in it (also called BCG

- brightest cluster galaxy). We expect disturbed clusters to have their most massive central galaxy

displaced from the center of the potential well. Similarly to other works (e.g. [10]) the dynamical

state of a cluster (defined as regular or disturbed) is defined by using the center shift. The center

shift is defined as the spatial separation between the position of the minimum of the potential and

the center of mass of the galaxy cluster. Elongation is measured as the ratio between greatest and

lowest semi-axis of the galaxy cluster.

In Figure 7 we plotted the relation between elongation and dynamical state of the clusters for

data from simulations D1, D5, D6, D9 and D22. Data are obtained for redshift z=0. We can see

a weak correlation between cluster elongation and dynamical state. Galaxy clusters in interaction

are on average more elongated. This can be explained with mutual gravitational forces pulling each

of the components apart (see [11]) or that we see two clusters that recently undergone a merger as

a single elongated one.

Our findings about interaction-elongation relation is consistent with [9]. The authors studied ap-

proximately 2400 groups and clusters of galaxies from the hydrodynamical simulation IllustrisTNG
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Figure 7. Correlation between the degree of interaction of a cluster and its elongation. For an indicator of interaction
we took the difference between center of the cluster and center of the most massive galaxy in it. Data includes galaxy
clusters in simulations D1, D5, D6, D9 and D22, each of the regions represented by a different color.

at z=0, concluding that galaxy clusters in interaction are strongly affected by the infalling materials

from filaments, while relaxed clusters are not and are thus more spherical. They explained the

relation between interaction and elongation with different accretion histories.

Figure 8. Time dependence of elongation of clusters with respect to their mass. As an indicator of elongation we used
ratio (a− c)/a, where a is the greatest semi-axis and c the smallest semi-axis. Then we compare this ratio at redshift
0 and redshift 1. If the ratio reported on the y-axis is greater than one, cluster is getting more elongated with time,
a lower value means that cluster is getting more spherical with time.

4.6 Time dependence of elongation of clusters

Using simulations at different redshifts we were able to determine how clusters develop with time

(see Figure 8). Elongation was determined similarly as in the previous paragraph. Although some

clusters are getting more elongated with time and some of them less elongated, there is a clear trend

showing that on average clusters are getting more elongated with time.

There is also a trend related to cluster masses: on average the most massive clusters become

more elongated with time, while smaller clusters are getting less elongated (see Figure 8).

We can also notice that three most massive clusters are evolving quite differently from others.

This trend is also present in Figure 6, where we present the relation between the ratio of axes

(maximal) and the virial mass of clusters. Those three clusters seem to stay as elongated as at the

beginning, but they have a high interaction rate (as seen in Figure 7).
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5. Conclusion

In this paper we studied the triaxiality of simulated galaxy clusters and tried to connect their

shape to other properties (namely masses and dynamical state). We have shown that data from

simulations fits well with observational data regarding the ratio of projected axes. We established a

relation between average ratio of projected axes and maximal 3D elongation. There is still an open

question about sharp limit that represents maximal (possible) elongation for (simulated) galaxy

clusters. And also on the contrary, why there exist galaxy clusters below this point. One of possible

explanations is that those galaxy clusters are not in equilibrium.

We confirmed that more massive clusters are normally more elongated, and also, that clusters

that are in a disturbed dynamical state are more likely to have a bigger axes ratio. During the

cosmic evolution most clusters seem to get more elongated. There is a weak correlation between

cluster mass at z=0 and the time dependence of the elongation.
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