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CAN ONE HEAR THE SHAPE OF A DRUM?

DON ROLIH

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

In the first part, the Helmholtz equation is presented and a simple proof of isospectrality between two polygonal
billiards is provided. Next, the geometric properties of billiards that can be deduced from the eigenvalue spectrum are
examined and the statistical behavior of the spectrum is explored. In the last part, we two experimental realizations
of isospectral billiards are provided which give experimental confirmation of isospectrality.

ALI LAHKO SLIŠIMO OBLIKO BOBNA?

V prvem delu je predstavljena Helmholtzova enačba in preprost dokaz izospektralnosti dveh biljardov v obliki
večkotnika. Naslednji del je posvečen geometrijskim lastnostim biljardov, ki so dobljene s pomočjo lastnih vred-
nosti, in raziskavi statističnega obnašanja spektra. V zadnjem delu sta predstavljeni dve eksperimentalni potrditvi
izospektralnosti različnih biljardov.

1. Introduction

In an article in 1966 Mark Kac 1, a Polish-Jewish mathematician known for his work in probability

theory [1], asked an intriguing question: can one hear the shape of a drum? [2] That is, if we know

the frequencies with which the membrane of a drum oscillates, can we know what shape is the

boundary of a drum? In the paper, we will show that this is not the case!

Firstly, we will provide a simple example of isospectral domains (i. e. domains with the same

spectrum of the Laplacian) in two-dimensional Euclidean plane with a simple construction proce-

dure. We will call such domains billiards.

In the more physics-focused part of the paper, we will focus on quantum billiards and explore

the connection between the spectrum and chaos. We will also describe several interesting experi-

ments which provide experimental confirmation that there indeed exist two-dimensional billiards of

different shapes that have the same eigenvalue spectrum.

2. The Helmholtz equation and isospectrality

In this paper, we will be primarily concerned with the eigenvalues of the Laplacian. We are solving

the following partial differential equation (also called the Helmholtz equation)(
∂2

∂x2
+

∂2

∂y2

)
f + Ef = ∆f + Ef = 0, (1)

where f is some function on a domain (or a billiard) D ⊂ R2. The function f must be at least

two times differentiable. Whenever we are solving such an equation, we have to specify boundary

conditions. Throughout this paper, we will assume Dirichlet boundary conditions, i. e. the function

f vanishes on the boundary ∂D
f
∣∣
∂D = 0. (2)

1He was originally from Krzemienec (then Poland, now Ukraine) and completed his Ph.D. at the University of
Lwów, where he was a member of Lwów School of Mathematics, which included famous names such as Stanis law
Ulam and Stefan Banach. After completing his Ph.D. he received a scholarship in New York City in 1938. He was
able to stay in America, while his family perished tragically in the Holocaust. After the war he worked mainly at
Cornell University.
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When one makes suitable approximations, the equation (1) describes numerous physical systems:

oscillations of a thin vibrating membrane, electromagnetic field components in a metallic cavity and

a free motion of a quantum particle confined in a box (time-independent Schrödinger equation).

The one-dimensional case reduces to the problem of vibrating strings which was solved already in

the 18th century. In the case of an oscillating membrane, the boundary condition (2) translates to

having a clamped membrane at the boundary of the drum where there are no oscillations; in the

quantum case it means that the wave function vanishes on the boundary (so called hard walls). The

reason for calling such domains billiards is the following: we imagine a Hamiltonian such that the

potential inside the domain is zero and infinity otherwise. This ensures mirror-like reflections at the

boundary.

It is known [3] that the equation (1) with boundary conditions (2) has an infinite, but countable

number of solutions. We can therefore denote the solutions with {fn}n∈N and eigenvalues with

{En}n∈N, where we can ensure that 0 < E1 ≤ E2 ≤ . . . .

Figure 1. Isospectral billiards from [4].

We call two billiards isospectral if the

sets of eigenvalues which are solutions to

the equation (1) with boundary conditions

(2) are the same. The answer ’no’ to Kac’s

question would therefore require us to find

two billiards of different shapes that are

isospectral. In an article from 1992 [4] it

was shown that such billiards in fact do

exist and so one cannot hear the shape

of a drum. An example of such a pair of

isospectral billiards is depicted in Figure 1.

The authors used advanced mathematical

tools which far exceed the scope of this paper but in the next section, I will try to present a simple

proof of isospectrality based on a pair of very simple polygonal billiards.

3. A simple proof of isospectrality

In this section, we will provide a simple proof of isospectrality of two simple billiards from Figure

2, which can then be generalized to other billiards – this method is called paper folding proof. It

nicely captures the essence of isospectrality without being too mathematically involved [3].

Figure 2. Billiards used in Section 3..
Thick lines indicate Dirichlet boundary
conditions, dotted lines are eye guides.
Picture adapted from [3].

We will illustrate the method with two simple billiards B1
and B2, presented in Figure 2. Both billiards are built out

of 7 identical rectangular subdomains. Let us denote with ψ1

the eigenfunction on B1 and E the corresponding eigenvalue.

At the end of the proof we want an eigenfunction ψ2 on the

billiard B2 with the same eigenvalue E, which has to verify the

Helmholtz equation (1), satisfy the boundary condition and

have a continuous normal derivative inside B2.
The main idea is to construct ψ2 from a superposition of

translations of ψ1. Because equation 1 is linear the function ψ2

will also be a solution. The only thing that needs to be checked

are the boundary conditions – we are therefore looking for a

superposition that satisfies Dirichlet boundary conditions.

We start by imagining three copies of B1 and fold them according to Figure 3. We now super-

impose them onto one another as shown on the right of Figure 3 to get the shape of the billiard B2.
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We make the following rules: stacking two rectangular subbilliards onto one another is equivalent to

adding the functions defined on them; similarly, stacking the reverse of a subdomain is equivalent to

subtracting them. The function ψ2 on the billiard B2 (see Figure 2) is defined by these operations,

e. g. on the 7th rectangular subdomain it is defined as

ψ2

∣∣
subdomain 7

= ψ1

∣∣
subdomain 1

− ψ1

∣∣
subdomain 4

+ ψ1

∣∣
subdomain 7

. (3)

Let’s check that this procedure ensures that ψ2 is zero on the boundary. If we look at the first

rectangular subdomain in the billiard B2 we have

ψ2

∣∣
subdomain 1

= −ψ1

∣∣
subdomain 1

+ ψ1

∣∣
subdomain 2

− ψ1

∣∣
subdomain 5

. (4)

We know that ψ1|subdomain 5 = 0 on the leftmost boundary (indicated by the thick line in B1).
Because subdomains 1 and 2 are touching in B1 we know that ψ1

∣∣
subdomain 1

and ψ1

∣∣
subdomain 2

must

be the same at that boundary and so

−ψ1

∣∣
subdomain 1

+ ψ1

∣∣
subdomain 2

= 0. (5)

But folded into the billiard B2 this is exactly the leftmost boundary of subdomain 1. Therefore ψ2 is

zero on the leftmost boundary of subdomain 1. This procedure is then repeated for every boundary

of B2 for a full proof of isospectrality.

The procedure presented is clearly independent of the shapes of the subdomains which constitute

the billiards, as all that is important is the way we ’glue’ them together. For example, one can

similarly construct isospectral billiards with a triangular subdomain. The pair of such billiards D1

and D2 is shown in Figure 1.

Figure 3. Paper folding procedure. Used with permission from [3].

4. What properties of drums can one hear?

Having seen in the previous section that one cannot hear the shape of a drum, the natural question

arises: what geometric properties of the system can we extract from the eigenvalue spectrum? At
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the end of this section, we will also touch the topic of statistical distribution of eigenvalues and how

it applies to two-dimensional billiards.

4.1 Mean density of eigenvalues

Given a billiard B we want to extract some information about the geometry of B based on the

eigenvalue spectrum. We start by defining the density of energy levels

d(E) =
∑
n

δ(E − En) (6)

and then integrating to get the counting function

N =
∑
n

Θ(E − En) (7)

which tells us how many eigenvalues are below energy E. Clearly, a pair of isospectral domains has

the same counting function N (E).

We now want to examine the mean behavior of the counting function. Suppose we have an

N -dimensional system in a domain D described by the Hamiltonian

H(p,q) =
p2

2m
+ V (q), (8)

where

V (q) =

{
0, q ∈ D,
∞, otherwise.

(9)

We use the well known Thomas-Fermi approximation which makes the assumption that each quan-

tum state occupies a volume of (2π~)N in phase space.

Applying this approximation to (7) we can, instead of an infinite sum, use the integral over

phase space

N (E) ≈
∫

dNpdNq

(2π~)N
Θ(E −H(p,q)) =

1

Γ(N/2 + 1)

(
m

2π~2

)N/2 ∫
V (q)<E

[
E − V (q)

]N/2
dNq, (10)

where in the last equality we integrated over the momentum part of the phase space [3]. When we

describe the movement inside a N -dimensional domain of volume V, we get

N (E) ≈ V
Γ(N/2 + 1)

(
m

2π~2

)N/2
EN/2. (11)

This is the first term in the Weyl expansion, first calculated by Hermann Weyl in 1911 [5].

For two-dimensional billiards, this reduces to (with the appropriate selection of units)

N (E) ≈ A

4π
E, (12)

where A is the area of the billiard [3]. One of the most striking consequences of equation 12 is

the conclusion that if two billiards are to be isospectral they must have the same area. Or rather,

formulated in the way of Mark Kac, one can hear the area of the drum.

Later several more terms were calculated and added to the Weyl expansion [3] for two-dimensional

billiards

N (E) ≈ A

4π
E ∓ L

4π

√
E +K, (13)
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where L is the perimeter of the billiard, the (+) is valid for Neumann boundary conditions, the (−)

sign is valid for Dirichlet boundary conditions and K contains information about the curvature of

the boundary. More specifically, for billiards consisting of smooth edges γi which come together at

corners of angles 0 < αi < 2π we get

K =
∑
i

1

24

(
π

αi
− αi
π

)
+
∑
i

∫
γi

κ(l)

2π
dl, (14)

where κ(l) is the curvature of the edges. As we can therefore see from equation (13), isospectral

billiards must have the same area, perimeter and K, which in the case of polygonal billiards means∑
billiard 1

(
π

αi
− αi
π

)
=

∑
billiard 2

(
π

αi
− αi
π

)
(15)

because curvature κ of straight lines is zero. In later sections we will also see that (13) has been

checked experimentally.

4.2 Statistical behavior of eigenvalues

This subsection will deviate slightly from our central topic of isospectral billiards and focus on the

statistical behavior of the eigenvalues of specific billiards. We start by considering a general Hamilto-

nian H which does not explicitly depend on time and by using the ansatz ψn(x, t) = ψn(x) exp( i
~Ent)

arrive at the time-independent Schrödinger equation

Hψn(x) = Enψn(x), (16)

we have found a constant of motion with a corresponding quantum number n. Without delving into

the theory of chaotic systems let us mention that in completely chaotic systems, there are no other

constants of motion [6]. If we expand ψn into a set of orthogonal functions φm(x)

ψn(x) =
∑
m

anmφm(x), (17)

we can also obtain the matrix representation of the Hamiltonian Hnm in the basis φm. If there

exists a Hermitian operator R which commutes with H, we can use its eigenfunctions

Rφn,α = rnφn,α (18)

to construct a block diagonal form of H with blocks Hn, which follows from

0 = 〈φn,α|RH −HR|φm,β〉 = (rn − rm) 〈φn,α|H|φm,β〉 =⇒ 〈φn,α|H|φm,β〉 = δn,mH
n
αβ. (19)

We can then use further symmetries to reduce H.

In the case of the hydrogen atom, we get four quantum numbers n, l, m and ms. These represent

the degrees of freedom of an electron, of which there are also four. We can now define what we

mean by an integrable system: if the number of degrees of freedom is the same as the number of

quantum numbers, we call the system integrable [6].

An example of a non-integrable system is an atomic nucleus. We are interested in the distribu-

tion of the energy levels of atomic nuclei which have been determined experimentally with nuclear

spectroscopy. We define the spacing between energy levels as

sn = En − En−1 (20)
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and are interested in its distribution function p(s). We present a data set known as the nuclear data

ensemble which consists of results of the spectra for more than 30 nuclei (which have been normalized

in order to be comparable) [6]. It can be shown [6] that the variable s obeys the Wigner-Dyson

distribution

p(s) =
π

2
s exp

(
−π

4
s2
)
. (21)

The interesting thing connecting this to two-dimensional billiards is the fact that the same

distribution was observed experimentally in a quarter stadium billiard [6]. The experiment uses the

same technique as the experiment presented in Section 5.1 (electromagnetic waves in a cavity). In

the spirit of Kac, we could therefore say one cannot tell if one is ’listening’ to a nucleus or a quarter

shaped billiard as the spacing distributions of the spectrum ’sound’ the same.

Finally, we consider an example of an integrable billiard, meaning that H is diagonal (in the

appropriate basis) after all symmetries of the system have been considered. What kind of a spacing

distribution do we expect in this case? We make the assumption that eigenvalues are uncorrelated

based on the fact that each of them is in its own symmetry class. Then we can say that p(s)ds is

the probability to find only one eigenvalue between s and ds from a given eigenvalue. We divide

the interval of length s into N parts and we arrive at

p(s)ds = lim
N→∞

(
1− s

N

)N
ds, (22)

where we multiplied the probability of finding no eigenvalues in any of the smaller N intervals and

the probability of finding one between s and s + ds. Here it was necessary that eigenvalues are

uncorrelated. After taking N to infinity we get an exponential distribution

p(s) = exp(−s). (23)

We check this on a rectangular billiard with side lengths a and b. As the billiard is rectangular

we can analytically get the following expression for the eigenvalues

En =
~2k2n
2me

=
~2

2me

[(
πn

a

)2

+

(
πm

b

)2
]
, n, m ∈ N. (24)

It can be seen [6] that the distribution agrees with the Poisson distribution (23).

5. Experimental realization

In the following section, we will present experimental realizations of isospectral billiards D1 and D2

in Figure 1. Since in general there are no analytical solutions to equation (1) (only for specific set

of boundary shapes), numerical and experimental calculation of eigenvalues is of even greater im-

portance. It is also nice to see the correspondence between rather abstract mathematical formalism

of isospectral theory and concrete, physical examples.

5.1 Electromagnetic waves in metallic cavities

The first experimental verification of isospectrality was done in 1994 by Sridhar [7], using microwaves

in two thin copper cavities which were shaped as in Figure 1. As we will show in the following

paragraphs, this can also be understood as a simulation of a quantum billiard.

From Maxwell’s equation it follows [8, p. 356 - 360] that electromagnetic waves propagating

through a hollow metallic cylinder (of arbitrary cross section and height h) obey the Helmholtz

equations (
∆ + k2

)
E = 0,

(
∆ + k2

)
B = 0, (25)
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where k = ω/c and ω is the angular frequency. The electric field E and the magnetic field B have

to satisfy the following boundary conditions

n̂×E = 0, n̂ ·B = 0, (26)

where n̂ is the normal vector. If the cylinder is sufficiently thin and all the walls parallel or perpen-

dicular to êz then they are equivalent to

Ez
∣∣
∂D

= 0, ∇Bz
∣∣
∂D

= 0. (27)

One of the solutions is a well known transverse magnetic mode (TM) which takes the form of

[9]

Ez(x, y, z) = ψ(x, y) cos

(
j
πz

h

)
, j = 0, 1, 2, . . . , (28)

Bz(x, y, z) = 0, (29)

where the scalar function ψ is the solution to the following Helmholtz equation[
∆ + k2 −

(
j
π

h

)2
]
ψ = 0, ψ

∣∣
∂D

= 0. (30)

We can see that for k < π/h only modes with j = 0 (because the constant in square brackets in

equation (30) must be positive [8, p. 360]) are allowed and so we can write(
∂2

∂x2
+

∂2

∂y2

)
ψn = k2nψn. (31)

This is obviously the same equation as the stationary Schrödinger equation

− ~
2m

(
∂2

∂x2
+

∂2

∂y2

)
ψn = Enψn, (32)

where quantum-mechanically the boundary conditions are those of an infinite potential well. This

shows that for thin cavities where

h ≤ λmin/2 = c/(2νmax), (33)

the quantum billiard obeys the same equation as electromagnetic waves which can therefore be used

to simulate quantum billiards [9].

The experiment from Sridhar [7] was performed using two copper cavities in the shape of billiards

in Figure 1; their height being h = 6.3 mm and smaller side of the triangles (subdomains of the

billiards) being 76 mm long. From (33) it follows that only frequencies below ν0 = 25 GHz are

allowed.

They obtained 54 lowest eigenvalues by determining the maxima of resonances in the transmis-

sion spectrum. In Figure 4 we can see the result of their experiment. It is obvious that both billiards

D1 and D2 have the same resonant frequencies and are therefore isospectral. More precisely, they

found relative discrepancies of 0.01 % to 0.2 % between pairs of billiard eigenvalues.

The results for the 54 eigenvalues also agree with Weyl’s expansion (13) for the counting function

N (E) with measured values for the area A = 0.02 m2, perimeter L = 78 cm and K = 5/12. This

means that no eigenvalues were missed at these low frequencies.
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Figure 4. Transmission spectra vs frequency for the billiards D1 and D2 (shifted vertically for clarity). Isospectrality is
obvious from the same resonant frequencies. It should be noted that the amplitude of the resonance is irrelevant, since
it is dependent in the large part on the field strength at the probe location. This is especially noticeable with the 7th
eigenvalue around 4 GHz which was measured at ν

(1)
7 = 4.07030 GHz for the first billiard D1 and at ν

(2)
7 = 4.07028 GHz

for the second billiard D2 [7]. The width of the resonances is due to assembly of the cavities. Used with permission
from [7].

5.2 Vibrations of a smectic liquid crystal

Another experimental proof of isospectrality was made using liquid crystals in a smectic phase – in

this phase the molecules are arranged in layers [10]. The authors modeled two-dimensional drums

using smectic liquid crystals whose transverse vibrations in vacuum obey the Helmholtz equation (1)

with Dirichlet boundary conditions (2). A thin film of this liquid crystal is analogous to a membrane

of a conventional drum. They have not only checked the spectrum but also the eigenfunctions of

the two shapes in Figure 1.

First, they made the shapes in Figure 1 from stainless-steel with thickness 125 µm with the

deviation from the desired boundary of about ±5 µm. Then they applied the film of a smectic liquid

crystal onto the shape, which after a few hours reaches equilibrium uniform thickness e of order

100 nm. Compared to the lateral dimension of the shape which was about 1 cm the two-dimensional

approximation of the membrane is well-justified. The liquid crystal used is in smectic phase at room

temperature. One of the advantages of using a liquid crystal in a smectic phase is that it possesses

isotropic and uniform intrinsic tension γ (in this experiment γ ≈ 5× 10−2 N/m). The experimental

set up is shown in Figure 5.

We can describe the transverse vibrations of the liquid crystals with the following wave equation

γ∆ψ = ρe
∂2ψ

∂t2
, (34)

where γ is the intrinsic tension, ρ is the density and the function ψ describes vertical displacement

from the equilibrium position with the boundary condition ψ = 0 for every point on the boundary.

Using the product ansatz ψ = z(x, y)T (t), we get the Helmholtz equation (1) for the function z.

To excite the film of the liquid crystal, they used a pinpoint electrode under the film to which

voltage was applied. The position of the electrode was precise within 10−2 mm. To detect vibrations

of the film they used the reflection of a laser on the surface of the liquid crystal; a photodiode is

then used to detect the deviation of the laser from its initial direction. Using excitation frequencies

8 Matrika 8 (2021) 2
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Figure 5. Experimental set-up for the vibrating liquid crystal. With the help of the photodiode we can measure the
deviation of the laser beam from the starting direction. Figure reproduced from [10].

from 100 Hz to 1 kHz they were able to detect eigenvalues as resonance peaks. Moving the electrode

allowed them to reconstruct eigenfunctions.

Their measured frequencies between billiards D1 and D2 differ by less than 0.15 % on average

and by 0.34 % at maximum, which is well within their stated experimental relative error of order

0.5 % [10]. We can therefore conclude that the spectrum of both billiards is the same and that they

have successfully answered ’no’ to Kac’s question.

6. Conclusion

We have explored the topic of eigenvalues of the Laplacian in two-dimensional billiards and with a

simple example of an isospectral pair showed that one cannot hear the shape of a drum. We have

then explored what possible geometric information one can get from the eigenvalue spectrum and

also touched on the topic of statistical behavior of the spectrum of two-dimensional billiards. In

the last section we have seen the connection between experiment and theory, where experimental

realizations of isospectral billiards beautifully confirm the abstract mathematical theory.

For me, one of the most fascinating things about this topic is precisely the interplay between

abstract mathematics and physics. Such a simple question of hearing shapes of drums which can

almost be understood by a child, has produced immense results in abstract mathematics and then

found its way back to physics, experimental physics even.
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