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TESTI SPLOŠNE TEORIJE RELATIVNOSTI

GREGOR KOŠIR, KRIŠTOF ŠPENKO

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

Članek predstavi štiri teste splošne relativnosti. Prvi trije so znani tudi kot klasični testi; gravitacijski rdeči
premik, precesija Merkurjevega perihelija in ukrivljanje svetlobe zaradi Sončevega gravitacijskega privlaka. Predlagal
jih je že sam Albert Einstein. Četrti test, ki je bil prav tako predlagan že dolgo časa, je bil nedavno uspešno izveden
zaradi razvoja detektorjev gravitacijskih valov. Predstavljena je metodologija in fizika, na kateri so bili ti testi osnovani.
Ta prispevek se v glavnem osredotoča na štiri eksperimente, medtem ko jih je bilo izvedeno še mnogo več, saj je splošna
relativnost še vedno zelo bogata z eksperimentalnimi napovedmi.

TESTS OF GENERAL RELATIVITY

The article gives an overview of four tests of general relativity. The first three are known as the classic tests;
prediction of gravitational redshift, perihelion precession of Mercury and Sun’s deflection of light via gravity. They
were already introduced by Albert Einstein himself. The fourth test, while also predicted a long time ago, has
been recently verified due to the development of gravitational wave detectors. A description of the physics behind
these experiments and the methodology used are presented. While this article focuses mainly on four, many other
experiments and tests were conducted, as general relativity was and still is rich with experimental predictions.

1. Introduction

Upon its introduction in the early 20th century by Albert Einstein, general relativity (GR) quickly

changed our understanding of gravity and the Universe in general. Many new processes were pre-

dicted from it, and experiments to prove their existence followed. At the time Einstein himself

proposed three ”classical tests” of his theory, he predicted the need for a gravitational redshift,

explained the perihelion shift of Mercury and the deflection of light by the Sun. In this article,

these three tests are described in some detail with the recently discovered gravitational waves at

the end to demonstrate the predictive power contained within the theory of general relativity.

In order to discuss these experiments, we first need to understand some crucial concepts of GR.

General relativity is a geometric theory, which is capable of describing physics in curved spacetime.

This curved spacetime is mathematically described as a manifold, that being a topological space

which, at any point, locally looks like a flat Euclidean space (we can imagine multiple small flat

tangent planes that together compose a curved sheet). The mathematical definition is quite aliena-

ting, but the most basic example of a general manifold is the Earth’s surface, a sphere. Now this

concept introduces many problems for our common understanding of nature. Firstly, we no longer

know how to compute the distance between two points. Similarly, we can no longer translate vectors

in straight lines because we do not know what a ”straight line” is. Therefore we need to introduce

a concept or, better yet, a quantity that will describe the geometry of our manifold and give us

the information as to how are local Euclidean spaces of different points sewn together into a single

sheet. This quantity is called the metric tensor gµν (physical quantities are generally tensors in

GR), and from it, we get a notion of ”past” and ”future”, causality, and what the shortest distance

is. We calculate the distance between two points in terms of the line element:

ds2 = gµνdxµdxν (1)

where the indices µ and ν describe the four coordinates of spacetime (one temporal and three

spatial coordinates). Let us also mention that the coinciding superscript and subscript indices

are summed over according to the Einstein summation convention. In this convention the metric
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tensor is also used for raising and lowering specific indices of vectors/tensors gαβA
β = Aα. We

can imagine dxµ as the informal notion of an infinitesimal displacement (although actually it is

derived as the rigorous notion of a basis one-form given by the gradient of a coordinate function

[2]). It is also worth mentioning that the flat Minkowski metric used in this article uses the form

ηµν = diag(−1,+1,+1,+1). Another example of a metric tensor in the case of a sphere (two-

dimensional curved plane) is of the form gµν = diag(1, sin2θ). We will also use the system of

natural units, having units defined such that the numerical values of the selected physical constants

(c) in terms of these units are exactly 1 (therefore we can omit them).

Now that we have a quantity that describes the geometry of our spacetime, we need to define a

”connection”, which gives us a way of relating vectors in the tangent spaces of nearby points by

taking into account all the ways in which curvature manifests itself. We construct the connection

from the metric in terms of the Christoffel symbol :

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν), (2)

which looks like a tensor, but in fact does not behave like one. The fundamental use of a connection

is to define a covariant derivative operator ∇ to perform the functions of the partial derivative, but

in a way independent of local coordinates. The covariant divergence of a vector field V µ is given by

∇µV µ = ∂µV
µ + ΓµµνV

λ. (3)

A connection also defines a specific way of keeping a tensor (physical quantity) ”constant” along

some path, meaning it is ”parallel transported” (translations of vectors in Euclidean space). The

crucial difference between flat and curved spaces is that, in a curved space, parallel transport will

change the transported quantity and the result will depend on the path taken between the points.

Therefore there is no true equivalent of parallel transport in curved spaces. We can however define

parallel transport of a tensor to be the requirement that the covariant derivative of the tensor along

the path vanishes. We can write the equation of parallel transport for a vector in the form:

d

dλ
V mu+ Γµσρ

dxσ

dλ
V ρ = 0. (4)

With this, we can define a straight line as a path that parallel-transports its own tangent vector.

We define a path xµ(λ) with the help of an affine parameter λ, which is a well-defined measure

of progression along this path. The tangent vector to the path is dxµ/dλ. We can now write the

condition for a straight line in terms of the directional covariant derivative:

D

dλ

dxµ

dλ
=

(
dxµ

dλ
∇µ
)
dxµ

dλ
= 0, (5)

this can be further rewritten in the geodesic equation:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (6)

where we can quickly check, that in the case of cartesian coordinates in Euclidean space (Γµρσ = 0)

the geodesic equation becomes d2xµ/dλ2 = 0, which is the equation for a straight line.

Finally, the technical expression of curvature is contained in the Riemann tensor. Everything we

want to know about the curvature of a manifold is given to us by the Riemann tensor, which will

vanish (i.e., it will be zero in all its components) if and only if the metric is perfectly flat. As we

have mentioned true parallel transport is not possible on curved spaces and will always change the

quantity transported. The Riemann tensor is defined exactly by the change of a vector/tensor that
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is transported around an infinitesimally small loop. As a matter of fact, the commutator of two

covariant derivatives, measures the difference between parallel transporting the tensor first one way

and the other, versus the opposite ordering:[
∇µ,∇ν

]
V ρ = ∇µ∇νV ρ −∇ν∇µV ρ = RρσµνV

ρ − T λµν∇λV ρ, (7)

where Rρσµν is the Riemann tensor and T λµν is the torsion tensor, which is 0 in GR and any theory

which includes torsion is beyond the scope of this article. Using the previously defined covariant

derivative in eq. (3), the Riemann tensor can be written as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλνσ. (8)

While the Riemann tensor holds all information on the curvature of a manifold, it can be used

to form two other measures of curvature. By contracting the first and third indices of Rρσµν , the

symmetric Ricci tensor Rµν and its trace, known as the Ricci curvature scalar R, can be formed:

Rµν = Rλµλν , R = Rµµ = gµνRµν . (9)

General relativity is a metric theory of gravity (not the only one), such theories are restricted by

the existence of only one gravitational field that enters the equations of motion (therefore affecting

matter), and that is the metric. Different metric theories are distinguished from one another only

in the way matter (and possibly other additional fields) affects the metric.

In general relativity, we have the metric gµν and matter, which we describe as a tensor generalization

of the mass density, known as the energy-momentum tensor Tµν . Conservation of energy is thereby

conditioned with the equation ∇µTµν = 0. Just as Maxwell’s equations govern how the electric

and magnetic fields respond to charges and currents, we now want to have field equations that

govern how the metric responds to energy and momentum. From classical mechanics we know the

Poisson equation for the Newtonian potential ∇2Φ = 4πGNρ, where G is the gravitational constant

and ρ the mass density. Completely informally by analogy we expect that our metric will play the

role of the gravitational potential, therefore we expect equations of a form [∇2g]µν ∝ Tµν . As it

turns out we have a non zero quantity constructed from second derivatives: the Riemann tensor.

By trying out different combinations and contractions of the Riemann tensor, and by satisfying its

properties and the condition of energy conservation, we come to the correct expression. Einsteins

field equations (EFE), which lie at the core of GR, are therefore:

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν , (10)

where Rµν and R are the Ricci tensor and scalar, gµν is the metric, Tµν the energy-momentum

tensor and GN is Newton’s gravitational constant (these field equations can be formally derived by

starting with the Hilbert action and deriving the equations of motion).[2]

A solution to the EFE was provided by Karl Schwarzschild, which he derived while deployed to

the Russian front in the first world war, this was the same year (1915) that general relativity was

published. His metric can be shown in the form of a line element ds or proper time dτ :

ds2 = −dτ2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (11)

where (t, r, θ, φ) are the usual spherical coordinates, M is mass, and G is Newton’s gravitational

constant. This Schwarzschild metric will often be referred to.
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2. Gravitational redshift

The gravitational redshift of light was proposed by Albert Einstein, along with the precession of

Mercury’s orbit and the deflection of light by the Sun, as tests for his theory of gravity. At first it

was believed to be a direct test of general relativity as its derivations often employ Schwarzschild

solutions. Later it became clear that it is not a test for some theory of gravity in particular but of

the underlying equivalence principle in general [1].

The Einstein Equivalence Principle (or EEP) is a generalization of something called a Weak Equi-

valence Principle (WEP), which states that in a small enough region of spacetime, the motion of a

freely falling particle is the same in a gravitational field as it is in a uniformly accelerated frame.

An example of WEP in Newtonian mechanics would be that the acceleration of an object is equal

to the gradient of a gravitational potential, i.e., a = −∇Φ.

Einstein made the leap from gravity being indistinguishable from uniform acceleration for the mo-

tion of freely-falling particles, to encompass any experiment. The EEP states that in a small enough

region of spacetime the laws of physics reduce to special relativity and that it is impossible to detect

the existence of a gravitational field with local experiments [2].

Gravitational redshift is often described in comparison with Doppler shift, and according to EEP,

they are described in the same way. If one imagines two, for example, spaceships, one behind the

other, traveling at some acceleration a. The first one then emits a signal, also known as a light

wave, to the other. The second spaceship will then receive light with a slightly longer wavelength,

it will be red-shifted and this effect is known as a Doppler shift.

According to EEP, this would be in effect the same if one of the ships was standing still on Earth

at some elevation and the other at a slightly higher altitude also not moving. In this case we would

call it gravitational redshift, and it can be computed from Doppler shift

Doppler:
∆λ

λE
=

∆v

c
=
a∆y

c2
,

Gravity:
∆λ

λE
=
aG∆y

c2
,

(12)

where λE is the emitted wavelength and ∆λ = |λE − λO| with λO being the observed wavelength.

aG would in this case be the gravitational acceleration (often referred to as g).

While the concept of gravity assisted redshift was introduced by Einstein, it would take until 1959

for it to be definitively proven with the Pound-Rebka experiment [8].

Essentially, it was a real-life version of the thought experiment described above for comparing

Doppler and gravitational redshifts, using iron isotope 57Fe, as its 14.4 keV nuclear transition has

low levels of natural variation, as a source of photons and positioning it ∆y = 22.5 meters below a

detector. The configuration was also flipped to provide more data. However, the actual measurement

was not as simple as it appeared, to stop γ photons from being absorbed on the way, the path was

encased in a large Mylar cylinder and filled with liquid helium [10].

This was due to the required precision in red/blue -shift measurements, which was very high as the

effect of redshift on Earth at a distance of ∼ 22 meters, is incredibly small.

aG =
GM

r2
→ ∆λ

λE
=
GM∆y

r2c2
(13)

By inserting known values in eq.(13), the obtained result is ∆λ
λE
' 10−15, which explains why a lot

of liquid helium was needed.

A more formal derivation of gravitational waves with the use of General Relativity (GR) can be done

in various ways; examples can be found in [1],[9], [7] and [6], with various degrees of complexity. A

popular way to obtain the desired equations through GR is with the use of Schwarzschild metric.
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With the assumption of static spacetime, we consider two observers equipped with ideal clocks at

xµ(1) and xµ(2) (the numbers in brackets are for identification purposes). The coordinates are carefully

chosen so that the their spatial part is constant. Then the first observer begins emitting light at

the second. From the definition of proper time, we can write in terms of the first observer

dτ2 = g00(xµ(1))
(
dx0

(1)

)2
, (14)

where dx0
(1) is the coordinate time and dτ will be the time between two wave crests (period of the

emitted light) in terms of proper time. For the second observer, we write αdτ the time between

reception of the two emitted light waves in terms of proper time, as recorded by the second clock.

In the same way as in eq. (14), we can write

αdτ2 = g00(xµ(2))
(
dx0

(2)

)2
, (15)

for the second observer. Here we can use the assumption of static spacetime, as it requires dx0
(1) =

dx0
(2), by using this relation in eq.14 and dividing eq.15 with it. We get

α =

√√√√g00(xµ(1))

g00(xµ(2))
, (16)

where α can be expressed in terms of frequency as α = ν(2)/ν(1). We can also use the weak field

approximation in the form

g00 ' 1 + 2φ , (17)

where φ is small. This can be applied in eq. (16) to get the following expression:

α =
ν(2)

ν(1)
=

√√√√g00(xµ(1))

g00(xµ(2))
'

√
1 + 2φ(1)

1 + 2φ(2)
'
√(

1 + 2φ(1)

)(
1− 2φ(2)

)
' 1 +

(
φ(1) − φ(2)

)
, (18)

where a Taylor series approximation was used by assuming small φ(1) and φ(2), additionally, a second-

order term φ(1)φ(2) was abandoned in the approximation. By reordering eq.(18), the suspiciously

familiar equation appears

ν(2)

ν(1)
' 1 +

(
φ(1) − φ(2)

)
→ ∆ν

ν(1)
'
(
φ(1) − φ(2)

)
→ ∆ν

ν0
' GM

c2

(
1

r2
− 1

r1

)
, (19)

where φ = GM/r comes from the Schwarzschild solution and ν(1) as the frequency of emitted light

was renamed to ν0. We can show that this is in agreement with the equivalence principle eq.(13):

∆ν

ν0
' GM

c2

(
1

r2
− 1

r1

)
=
GM

c2

(
r1 − r2

r2r1

)
' GM

c2

(
∆y

r2

)
, (20)

where we defined ∆y = |r1 − r2| and because r1 and r2 are both in reference to M , we approximated

r1r2 ' r2.

3. Perihelion shift of Mercury

Observations of Mercury in the 19th century revealed an anomalous rate perihelion precession of the

perihelion, and although various explanations were proposed, it remained unexplained until Einstein
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Slika 1. A graphical representation of perihelion shift by φ, after some period of time.

resolved the issue with his general relativity.

Typically planets follow an elliptical orbit around the Sun, which is not fixed and can shift slightly

with time in the form of perihelion precession. Perihelion is a point at which the planet is closest

to the Sun, however its shift is measured as the rotation of the line connecting it to aphelion (the

furthest point), as shown in figure 1.

The precession rate can be defined as the first derivative of φ and is typically measured in arcseconds

per century. It can be written as

φ̇total = φ̇GR +
∑

planets

φ̇planet , (21)

and its individual components can be compared. For example, the biggest effect on Mercury are

other planets of our solar system, while GR contributes less than 10%, with the total value of about

43”/century. Table 1 lists the contributions for different planets.

Effect Value [arcsec/century] Error [arcsec/century]

Venus 277.4176 <0.0001
Earth/Moon 90.8881 <0.0001
Mars 2.4814 <0.0001
Jupiter 153.9899 <0.0001
Saturn 7.3227 <0.0001
General Relativity 42.9799 0.0009

Total 575.3100 0.0015

Tabela 1. Major contributions to the precession rate of the perihelion of Mercury (taken from [3]).

Before the GR contribution is calculated, it is worth revisiting classical Kepler motion and some

of the equations that could be compared with their relativistic versions.

3.1 Classical elliptical orbits

The motion of planets, stars and other objects under the influence of gravity has and often still is

calculated from Newton’s laws [1], even after the introduction of general relativity their accuracy is

still sufficient in most cases. These calculations typically apply Newton’s second law and Newton’s
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law of universal gravitation:

m
d2r

dt2
= −GmM

r2
r̃ (22)

where r̃ = ~r
|r| is a unit vector, masses of the bodies involved m, M ; and G is the Newtonian

gravitational constant. To derive the relevant equations, it is useful to define angular momentum

for a body with some mass m as:

~L = ~r ×m

(
~dr

dt

)
= m~h

d~L

dt
= 0 → ~h = const. (23)

Since in this case all orbits will be in the same plane and considering the conserved angular mo-

mentum, the equation of motion (22) can be rewritten to polar coordinates (R,φ), with ~̃R and ~̃φ

unit vectors.[
d2R

dt2
−R

(
dφ

dt

)]
R̃+

1

R

d

dt

(
R2dφ

dt

)
φ̃ = −GM

R2
R̃ → R̈−Rφ̇2 = −GM

R2
and

d

dt

(
R2dφ

dt

)
= 0

(24)

In polar coordinates, the equation for angular momentum (23) can be written as L = mR2φ̇ = mh,

using this and by introducing a new variable u = 1/R to eq.(24) a more simplified differential

equation for R = R(φ) can be written.

R̈− h

R
= −GM

R2
→ d2u

dφ2
+ u =

GM

h2
(25)

Known also as the Binet equation (eq.(25)) it can be solved with

u =
GM

h2
+ C cos(φ− φ0) → 1

R(φ)
=
GM

h2

[
1 + e cos(φ)

]
, (26)

where C and φ0 are constants from integration and e is the orbital eccentricity, defined as e = Ch2

GM .

3.2 General relativity and elliptical orbits

The approach in finding eq.(26) from general relativity, is to study timelike geodesics with Schwarz-

schild metric. Similarly, as in the Newtonian derivation, we assume the entire motion will be in a

plane, therefore it is convenient to employ spherical coordinates with θ = π/2. The argument to

justify this choice is that if the initial position and a tangent vector of a geodesic lie in a θ = π/2

plane, then the entire geodesic must be in this plane.

A timelike tangent of a curve, parameterized by proper time τ , can be written as

vµ =
dxµ

dτ
= ẋµ. (27)

Because vµ is timelike the following can be written using the Schwarzschild metric

gµνv
µvν = −

[
1− 2GM

r

](
dt

dτ

)2

+

[
1− 2GM

r

]−1(dr
dτ

)2

+ r2

(
dθ

dτ

)2

+ r2 sin2 θ

(
dφ

dτ

)2

= −1 ,

(28)

whereas before G is the Newtonian gravitational constant and M is mass. By applying θ = π/2 gets

us

−
[
1− 2GM

r

](
dt

dτ

)2

+

[
1− 2GM

r

]−1(dr
dτ

)2

+ r2

(
dφ

dτ

)2

= −1 . (29)
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With equation (29) and θ a constant, at least two more differential equations are required to com-

pute (t, r, φ, θ). These can be obtained by using a Lagrangian L = gµνv
µvν and calculating the

appropriate Euler-Lagrange equations: (eq.(30)).

∂L
∂xµ

− d

dτ

(
∂L
∂vµ

)
= 0 . (30)

The Euler-Lagrange (EL) equations are the solution of a stationary action problem δS = 0, where

the action is S =
∫
Ldτ .

Computing equation (30) for µ = 0 and µ = 3 yields the following solutions

µ = 0 :
d

dτ

[(
1− 2GM

r

)(
dt

dτ

)]
= 0 →

(
1− 2GM

r

)(
dt

dτ

)
= k

µ = 3 :
d

dτ

[
r2

(
dφ

dτ

)]
= 0 → r2

(
dφ

dτ

)
= h

(31)

where k is a constant, and h is the specific angular momentum as defined in equation (23). One

might notice that the Euler-Lagrange equation does technically provide all the differential equations

needed for (t, r, φ, θ). The choice of µ = 0 and µ = 3 was deliberate; we do not require to use and

compute eq.(30) with xµ = r [6].

The next step is very similar to the classical derivation in the previous subsection; it is to introduce

u = 1/r again and to use equations (31) with equation (29).

− [1− 2GMv]−1 k2 + [1− 2GMv]−1 h2

(
dv

dφ

)2

+ h2v2 = −1

k2 − h2

(
dv

dφ

)2

− (1− 2GMv)h2u2 = 1− 2GMv(
dv

dφ

)2

− 3GMv3 + v2 − 2GM

h2
=
k2 − 1

h2

(32)

This can then be derived by φ, as this will eliminate the constant term and the square of a derivative.

d2v

dφ2
+ v =

GM

h2
+3GMv2 (33)

The result (eq.(33)) is an equation that is suspiciously similar to the Newtonian eq.(25). The only

difference is the last term with 3GMv2. We can treat this as a perturbation, as 3GMv2 is about

∼ 10−7 times smaller than GM
h2

and the solution can then be in the form of v = v0 + v1.

The zeroth order solution v0 is unsurprisingly the Newtonian equation (eq.(33)).

d2v0

dφ2
+ v0 =

GM

h2
→ v0 =

GM

h2

(
1 + e cos(φ)

)
(34)

Eq.(34) can then be inserted into the first-order equation:

d2v1

dφ2
+ v1 = 3GMv2

0 → d2v1

dφ2
+ v1 =

3G3M3

h4

(
1 + 2e cos(φ) + e2 cos2(φ)

)
→ d2v1

dφ2
+ v1 =

3G3M3

h4

(
(1 +

1

2
e2) + 2e cos(φ) +

1

2
e2 cos(2φ)

)
,

(35)

where one can almost see the solution. By knowing that

d2

dφ2
(φ sinφ) = 2 cosφ and

d2

dφ2
(sin(2φ)) = −3 cos 2φ , (36)
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and using them with the eq. (35) one can determine the first order solution as

v1 =
3G3M3

h4

[
eφ sin(φ)−1

6
cos(2φ)−

(
1 +

1

2
e2

)]
. (37)

where the only relevant term is eφ sin(φ). This is because if φ increases, only this term will increase

v1. The complete solution will then be

v ' GM

h2

[
1 + e cos(φ) +

3G2M2

h2
φ sin(φ)

]
→ v ' GM

h2

[
1 + e cos

(
(1− ε)φ

)]
(38)

where ε = 3G2M2

h2
and all the less-relevant terms from (37) are absent. From eq. (38) we can now

see that ε represents the relative change in φ, which can be expressed as

∆φ = 2πε =
6πG2M2

c2h2
' 6πGM

c2(1− e2)a
(39)

where an approximation for the angular momentum h2 ' GM(1− e2)a is used (a is the semi-major

axis and e the orbital eccentricity). Inserting the known values for GM/c2, a and e yields the result

of 0.103” arcsec/orbit or 43 arcseconds per century [1], [6] and [2].

4. Deflection of light

4.1 Linearized gravity

The simplest way to examine the effect of the deflection of light is in terms of linearized gravity. In

the Newtonian limit, we take a weak and also static gravitational field. While the weak field limit

is sufficient for solar systems, we need to allow time dependence in order to examine fast-moving

particles such as photons. We describe the metric as:

gµν = ηµν + hµν |hµν | << 1 ηµν = diag(−1,+1,+1,+1) . (40)

From the metric, we can then derive Einstein’s equations. We need to mention that the above

metric does not completely specify the coordinate system on spacetime (there may be other coordi-

nate systems in which the metric can still be written in this perturbative way but with a different

perturbation). This gauge invariance indicates that physics will remain the same independent of

the choice of coordinates (in electromagnetism, we can add any curl vanishing vector field to the

vector potential, which is also a gauge symmetry). Lets here mention that this would mean GR is

also a gauge theory, which it is as are all theories of fundamental interactions (in fact, it is often

said that indeed general relativity is the unique theory of massless spin-2 particles at low energies

(gravitons)).

Before tackling gauge invariance however, we can decompose the components of the metric per-

turbation by choosing a fixed inertial coordinate system in the Minkowski background spacetime

and evaluating their transformation properties under spatial rotations. We decompose the tensor

into individual pieces, which transform only into themselves (irreducible representations from group

theory). The metric can be written as [2]:

ds2 = −(1 + 2Φ)dt2 + wi(dtdx
i + dxidt) + [(1− 2Ψ)δij + 2sij ]dx

idxj

h00 = −2Φ h0i = wi hij = 2sij − 2Ψδij

Ψ = −1

6
δijhij sij =

1

2

(
hij −

1

3
δklhklδij

) (41)
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From this metric, we can first derive the Christoffel symbols and from that the Riemann tensor,

Ricci tensor, and the Ricci scalar. Because of gauge invariance (hµν → hµν + ∂µξν + ∂νξµ), we can

also choose the transverse gauge: ∂is
ij = 0, ∂iw

i = 0. The Einstein’s equations, therefore reduce to

the following set of equations:

G00 = 2∇2Ψ = 8πGT00

G0j = −1

2
∇2wj + 2∂0∂jΨ = 8πGT0j

Gij = (δij∇2 − ∂i∂j)(Φ−Ψ)− ∂0∂(iwj) + 2δij∂
2
0Ψ−�sij = 8πGTij

(42)

4.2 Photon trajectory

Now in our case, we will model our static gravitating sources by dust (a good approximation for

stars), a perfect fluid for which the pressure vanishes: Tµν = ρUµUν = diag(ρ, 0, 0, 0). For static

sources we drop all time-derivatives and with the energy-momentum tensor obtain:

∇2Ψ = 4πGρ

∇2wj = 0

(δij∇2 − ∂i∂j)(Φ−Ψ)−∇2sij = 0

(43)

We want only the fields that are sourced by the right-hand side to be nonvanishing. Therefore

we quickly deduce that: wi = 0. Similarly, from the trace in the third equation, we also see that:

2∇2(Φ − Ψ) = 0 → Φ = Ψ, which changes the first equation into the classic Poisson equation.

Finally, inserting Φ = Ψ into the remnants of the third equation gives: ∇2sij = 0, the same

reasoning as before implies sij = 0 for a well-behaved solution. We thereby get the following metric:

ds2 = −(1+2Φ)dt2+(1−2Φ)(dx2+dy2+dz2) hµν = −2Φdiag(1, 1, 1, 1) ∇2Φ = 4πGρ . (44)

Now we consider the path of a massless particle (photon). We will solve the perturbed geodesic

equation for a null trajectory xµ(λ). Because of perturbation, we can write the geodesic as:

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) . (45)

Here x(0)µ solves the geodesic equation in the flat background spacetime (straight null path). In

the simplest case, we assume that the potential Φ does not drastically change along the background

and true geodesics with the condition: x(1)i∂iΦ << Φ. For convenience, we also define:

kµ ≡ dx(0)µ

dλ
, lµ ≡ dx(1)µ

dλ
. (46)

First, we need to satisfy the condition for the null path: gµν
dxµ

dλ
dxν

dλ = 0

0. order: ηµνk
µkν = 0 → (k0)2 = (ki)2 ≡ k2

1. order: 2ηµνk
µlν + hµνk

µkν = 0 → −kl0 + lik
i = 2k2Φ

(47)

We now turn to the perturbed geodesic equation d2xµ

dλ2
+ Γµρσ

dxρ

dλ
dxσ

dλ . With the transverse gauge we

get the Christoffel symbols:

Γ0
0i = Γi00 = ∂iΦ

Γijk = δjkδiΦ− δikδjΦ− δijδkΦ
(48)

Since the Christoffel symbols are already first-order, the zeroth-order calculation of the geodesic

just gives us a straight trajectory, while at first order we have:

dlµ

dλ
= −Γµρσk

ρkσ → dl0

dλ
= −2k(~k · ~∇Φ),

d~l

dλ
= −2k2~∇⊥Φ . (49)
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Here we introduced the gradient transverse to the path, defined as: ~∇⊥Φ = ~∇Φ − ~∇||Φ = ~∇Φ −
k−2(~k · ~∇Φ)~k. Integrating for µ = 0 gives:

l0 =

∫
dl0

dλ
dλ = −2k

∫
(~k · ~∇Φ)dλ = −2k

∫
(
d~x

dλ
· ~∇Φ)dλ = −2k

∫
~∇Φ · d~x = −2kΦ . (50)

Plugging this back in (47) we get that the ~l and ~k are orthogonal : ~l · ~k = kl0 + 2k2Φ = 0. The

Slika 2. A deflected geodesic is decomposed into a background geodesic and a perturbation. The deflection angle
represents the amount by which the wave vector rotates along the path.

value crucial for experimental validation will be the so-called deflection angle ~α. It represents

the amount by which the original spatial wave vector is deflected as it travels from a source to the

observer. It is a 2-dimensional value in the plane perpendicular to ~k, the wave vector of the photon

trajectory. We define the deflection angle with the help of the rotation of the wave vector, which

can be calculated as follows:

~α = −∆~l

k
, ∆~l =

∫
d~l

dλ
bλ = −2k2

∫
~∇⊥Φdλ . (51)

Let us remember that λ represents a general affine parameter, we can define the actual physical

spatial distance traversed as s = kλ, then we can finally write:

~α = 2

∫
~∇⊥Φds . (52)

Now we can finally evaluate the deflection angle in the case of a point mass, where we imagine

the background path to be along the x-direction with an impact parameter defined by a transverse

vector b = |~b| pointing from the path to the mass at the point of closest approach. First, we write

the potential and calculate its transverse gradient, after which we can integrate over it:

Φ = −GM
r

= − GM

(b2 + x2)1/2

~∇⊥Φ =
GM

(b2 + x2)3/2
~b

α = |~α| = 2GMb

∫ ∞
−∞

dx

(b2 + x2)3/2
=

4GM

b

(53)

The calculation was done in natural units c = 1. A factor of c2 should be inserted in the denominator

in other systems of units. The measurment of the deflection of light was historically the first

time Einstein’s theory correctly predicted a phenomenon that had not yet been detected. In 1919

Matrika 7 (2020) 2 11



“template” — 2020/9/7 — 12:07 — page 12 — #12

Gregor Košir, Krištof Špenko

Eddington [14] observed the positions of stars near the Sun during a total eclipse. The predicted

effect is however, quite small. For our Sun we have GM/c2 = 1.48 · 105cm, and the solar radius is

R = 6.96 · 1010cm. This together leads to a maximum deflection angle of α = 1.75 arcseconds.

In addition to the deflection of light, we can also observe a gravitational time delay. To the observer,

the photons appear to slow down with respect to the background light cones. This was pointed

out by Shapiro in 1964. It is worth mentioning that this time dilation is a different effect than the

geometrical delay that arises because the photons travel a longer distance; in the case of our Sun,

it is negligible [2].

Time dilation can be computed from the first-order perturbation of the trajectory:

t =

∫
dx0

dλ
dλ δt =

∫
dx(1)0

dλ
dλ =

∫
l0dλ = −2k

∫
Φdλ = −2

∫
Φds . (54)

5. Gravitational waves

Gravitational waves generally arise from the weak-field equations with the absence of the energy-

momentum tensor Tµν = 0. In the simplest case of linearized gravity [2], Einstein’s equations reduce

to the following conditions for well-behaved boundary conditions:

∇2Ψ = 0 → Ψ = 0

∇2wj = 0 → wj = 0

(δij∇2 − ∂i∂j)(Φ)−�sij = 0 → ∇2Φ = 0→ Φ = 0, �sij = 0

(55)

here we again chose the transverse gauge (∂iw
i = 0, ∂is

ij = 0). Because the degrees of freedom

(Φ,Ψ, wi) are all but sij equal to zero, we call this the transverse traceless gauge hTTµν . The

equations of motion become the following with a simple well-known solution in terms of Fourier

modes:

�hTTµν = 0 → hTTµν = Cµνe
ikσxσ (56)

hTTµν must be spatial, traceless and transverse, therefore yielding:

hTT0ν = 0 → C0ν = 0

ηµνhTTµν = 0 → ηµνCµν = 0

∂µh
0ν
TT = 0 → iCµνkµe

ikσxσ → kµC
µν = 0

(57)

We quickly see that our Fourier modes will have no temporal components and will be in the plane

orthogonal to the wave vector Cµν ⊥ kµ. The traceless part only reduces the number of independent

modes. The equations of motion yield an interesting result, that these waves will be null-like, which

would mean they would travel at the speed of light:

0 = �hTTµν = ηρσ∂µ∂σh
TT
µν = ηρσ∂µ(ikσh

TT
µν ) = −ηρσ(kρkσh

TT
µν ) = −kσkσhTTµν . (58)

Choosing a specific direction of the gravitational waves gives a further simplified form kµ = (ω, 0, 0, k3) =

(ω, 0, 0, ω). In general metric theories, we get six independent components, which indicate six di-

fferent polarizations. Only three are transverse to the propagation as GR dictates (h+, hx, hs), but

even than our linearized gravity yields only two independent components [11]:

Cjk =

hs + h+ hx hv1

hx hs − h+ hv2

hv1 hv2 hL

 '
h+ hx 0
hx −h+ 0
0 0 0

 . (59)
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Slika 3. The six polarization modes for gravitational waves permitted in any metric theory of gravity. Shown is the
displacement that each mode induces on a circular form of matter. The waves are set to propagate in the z-direction.
There is no displacement out of the plane of the picture.

For experimental cross-examination it is particularly useful to analyze the geodesic deviation equa-

tion. Here we consider nearby particles with four-velocities described by a single vector field Uµ

and a separation vector Sµ. Choosing a slow-moving particles Uµ = (1, 0, 0, 0), τ = x0 = t, we get

a very useful equation:

D2

dτ2
Sµ = RµνρσU

νUρSσ → ∂2

∂t2
Sµ =

1

2
Sσ

∂2

∂t2
hTT µ

ν . (60)

It is clearly evident that the separation vector will always be in the plane perpendicular to the

four-velocity vector. It is pedagogically convenient to observe the effect of our gravitational waves

modes separately as it indicates polarization of the waves in terms of geometrical deformations:

∂2

∂t2
S1,2 = ±1

2
S1,2 ∂

2

∂t2
(h+e

ikσxσ) → S1,2(t) =

(
1± 1

2
h+e

ikσxσ
)
S1,2(0)

∂2

∂t2
S1,2 =

1

2
S1,2 ∂

2

∂t2
(hxe

ikσxσ) → S1,2(t) = S1,2(0) +
1

2
hxe

ikσxσS2,1(0)

(61)

We can imagine the polarizations in terms of deforming a circular form of matter. While the first

polarization does not show any coupling, the components of the separation vector will stretch and

shrink out of phase orthogonally to each other. In contrast, the second polarization will yield

deformations at a 45o angle. Observing a more general metric would show even more modes or

polarizations, which GR does not predict. Analyzing the exact polarizations of distant gravitational

waves can therefore, serve as a direct tool for checking the validity of the theory. It is very interesting

to note that while GR permits only the two modes hx, h+ these actually indicate massless spin-2

particles (gravitons).

5.1 Binary star

In practical experiments, we usually observe gravitational waves produced by a source, so we cannot

expect Tµν = 0. It is a bit tedious but entirely possible to derive the existence of waves (with

linearized gravity) from a quadrupole moment tensor Iij(t) =
∫
yiyjT 00(t, ~y)d3y. For easier

derivation we define the trace-reversed perturbation h̄µν = hµν − 1
2hηµν , h̄ = ηµν h̄µν = −h. In

vacuum this is the same: h̄TTµν = hTTµν . We solve the equations of motion by using the retarded

Green function (disturbances in the gravitational field are calculated in terms of events on the
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past light cone). With the help of Fourier transformations, we obtain the solution in terms of a

quadrupole formula [11]:

�h̄µν = −18πGTµν → h̄ij(t, ~x) =
2G

r

d2Iij
dt2

(t− r) . (62)

Dipole momentum does not contribute anything because oscillation of the center of mass of an

isolated system violates the conservation of momentum. Gravitational radiation is therefore, much

weaker than electromagnetic, since the quadrupole moment, which measures the shape of the system,

is generally smaller than the dipole moment.

A typical case where such gravitational radiation is produced by the quadrupole moment is a binary

star(two stars in orbit around each other). Let us say they are in circular orbit both with the same

mass. We can write the explicit path of stars a and b, which give us the energy density:

x1
a,b = ±R cos Ωt, x2

a,b = ±R sin Ωt

→ T 00(t, ~x) = Mδ(x3)
[
δ(x1 −R cos Ωt)δ(x2 −R sin Ωt) + δ(x1 +R cos Ωt)δ(x2 +R sin Ωt)

]
.

(63)

Integrating the quadrupole moment than gives us:

h̄ij(t, ~x) =
8GM

r
Ω2R2

− cos 2Ω(t− r) − sin 2Ω(t− r) 0
− sin 2Ω(t− r) cos 2Ω(t− r) 0

0 0 0

 . (64)

5.2 Detecting gravitational waves

The most common sources of gravitational waves, that we expect to be measurable, are large or

better yet heavy binary systems, that we already non-relativistically described in the previous part.

By detecting gravitational waves, we mean observing the influence of the gravitational wave on test

bodies. Such observatories are usually laser interferometers. The laser is sent on a beamsplitter

and travels along two orthogonal paths of the same length bouncing multiple times front to end.

A gravitational wave will cause a change in the length of the paths that will be related to the

waves amplitude δL
L ∼ h. We are then able to measure the phase shift of the splitted beam.

The frequency of the orbit of a binary system and thus of the produced gravitational waves is

given non-relativistically by f = Ω/(2π) ∼ (cR
1/2
s )/(10R3/2), here we use the Schwarzschild radius

Rs = 2GM/c2. We then estimate the amplitude as h ∼ (R2
s)/(rR). Assuming a black-hole binary

system with ten solar masses (Rs ∼ 106cm), at a cosmological distance (r ∼ 100Mpc ∼ 1026cm) and

the radius of the orbit to be ten times the Schwarzschild radius (R = 10Rs), we get f ∼ 102s−1, h ∼
10−21 for an expected gravitational wave.

δL ∼ 10−16

(
h

10−21

)(
L

km

)
cm → δφ ∼ 200

(
2π

λ

)
δL ∼ 10−9 (65)

This would require a sensitivity of much less than the size of the constituents atoms out of which

any conceivable test masses would have to be made. The accumulated phase shift of a splitted beam

with λ ∼ 10−4cm making 100 round trips through the cavity arms would however, be detectable as

estimated in the above expression[2].

5.3 Speed of gravity

According to general relativity, gravitational waves should propagate at the speed of the limit. That

would hold at least in the limit at which the wavelength of gravitational waves is small compared
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to the curvature of the background spacetime. In other theories, this could differ due to additional

coupling of gravitation to ”background” fields. Another interesting perspective at the speed of

gravitational waves would be in the sense of massive gravitons. In a local inertial frame we would

write:
v2
g

c2
= 1−

m2
gc

4

E2
(66)

for a massive propagating particle, here vg is the speed of gravity, while mg and E are the graviton

rest mass and energy, respectively [15]. While the speed of gravity could be measured from the

Shapiro time delay, it contributes to a higher-order term and is therefore, difficult to measure.

The most used method for measuring the speed of gravity is to compare the arrival times of a

gravitational wave and electromagnetic wave from the same event, for example, a supernova or a

prompt gamma-ray burst. For a source at a distance D, the resulting value of the discrepancy is:

1− vg
c

= 5× 10−17

(
200Mpc

D

)(
∆t

1s

)
, ∆t = ∆ta − (1 + Z)∆te (67)

∆ta,∆te are the differences in arrival time and emission time of the two signals, respectively. Z is

the redshift of the source. In most cases though, ∆te is based on observation or modeling and is

not known exactly [15].

6. Conclusion

Within this article, we presented a brief overview and presentation of experiments crucial to the

validity and analysis of Einstein’s theory of gravity - general relativity. Proposed by Einstein him-

self, the classical tests are fundamental to the theory and show a key understanding of spacetime

in general. Even though general relativity has passed this test successfully it is still of great im-

portance to reexamine and verify them at higher accuracy. Measurements have so far been done

only at specific scales and limits, such as the weak-field limit. With more accurate experiments it

might be possible to discover very small deviations from what general relativity predicts and might

indicate the validity of other metric theories of gravity. It could very well turn out that the correct

equations should include two metrics, and the second metric could be relevant only at high energies;

this could indicate that the speed of light might be energy-dependent. These theories are known as

bimetric gravity.

As we have mentioned, the 21st century presents the start of a completely new frontier for ob-

serving and experimentally testing general relativity. The capability of detecting and measuring

gravitational waves has opened up new ways to confirm already checked aspects of GR as well as

to validate other not yet tested properties of GR. Searching and checking different polarization

modes might indicate the validity of other theories of gravity since, as we mentioned, GR predicts

only two modes that correlate with a spin-2 particle (graviton). In massless scalar-tensor gravity, a

third polarization mode would add a spin-0 scalar field. In particular, observations of gravitational

wave background with space-based interferometers might find scalar, vector, and tensor polarization

modes. In addition, these background waves may have been produced a very long time ago and

could hold information about the physics of the early Universe (beyond even the cosmic microwave

background)[16].

A particularly intriguing concept of GR that has not yet been examined completely is the exact

speed of gravity. While certain measurements have already been carried out, there is still much

debate on the exact behaviour of gravitational waves. The most common measurements are done

by observing binary neutron star mergers that emit both gravitational waves and short gamma-ray

bursts. Comparing the detection of both types of radiation, that arise from the same event, yields

stringent limits on the relative speed of gravity compared to the speed of light. The exact value is
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not possible to measure since it is difficult to even estimate the time delay between the emission

time of gravitational waves and electromagnetic radiation. While such measurements are currently

carried out at large observatories like LIGO and VIRGO, an experiment on much smaller scales

has recenty been proposed. A setup composed of two colinear masses and a detector in between.

Periodic oscillation of these two test bodies could cause constructive interference, through which

the speed of gravity could be theoretically measured[12][17].
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