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Many processes in nature have been observed to deviate from normal diffusion. Their mean squared displacement
grows either sublinearly or superlinearly in time. Such phenomena is called anomalous diffusion. As a model of
ordinary diffusion random walk is presented. Then the generalization to continuous time random walk is made. In
this model long waiting times and long jumps can be included and thus make a continuous time random walk suitable
model to describe anomalous diffusion. Lastly, two examples of anomalous: sub- and super-diffusion are presented.

ANOMALNA DIFUZIJA

V naravi je mnogo procesov, ki niso v skladu z normalno difuzijo, njihov kvadrat oddaljenosti s ¢asom raste
bodisi sublinearno ali superlinearno, kar je znacilno za anomalno difuzijo. V ¢élanku je kot model normalne difuzije
predstavljen model naklju¢nega sprehoda. Sledi predstavitev casovno zveznega naklju¢nega sprehoda, ki omogoca
vkljucitev dolgih korakov in dolgih ¢akalnih ¢asov. Ta model dobro opise nekatere procese anomalne difuzije. Na
koncu ¢lanka sta predstavljena tudi dva primera anomalne difuzije; en subdifuzijski in en superdifuzijski.

1. Introduction

The first phenomenological description of diffusion was done by Fick in 1855 after studying transport
trough membranes in living organisms. He assumed that to reach equilibrium particles have to flow
against the concentration gradient. Combining this assumption with the continuity equation he
obtained diffusion equation for the evolution of particles’ concentration c(x,t),
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where K denotes the diffusion coefficient (we have written the equation for one dimension). The
same equation holds for probability density function (abbreviated by PDF) p(z, t) to find a particle
at position z at time t. For an ensemble of particles starting at the origin x = 0 its evolution is
given by Gaussian function with variance 2Kt¢. Mean square displacement (abbreviated by MSD)
of the particles is then easily calculated by

(z%(t)) = /_+OO 2?p(z, t)dz = 2Kt. (2)

We see that MSD scales linearly with time, which is characteristic of normal diffusion described
by Eq. (1). Fifty years after Fick’s derivation notable work on diffusion was done by Einstein who
studied Brownian motion based on microscopic principles. Using statistical mechanics he obtained
same expression for MSD as in Eq. (2), moreover, he was able to relate K to measurable physical
quantities.

In the following years many processes have been observed that deviated from the normal diffu-
sion; from the movement of charges in amorphous semiconductors [1], to flight of an albatross [2],
for a brief overview see Refs. [3], [4]. Such processes are described by anomalous diffusion for which
MSD scales as power law

(2%(t)) =~ Kot® (3)

where K, is a generalized diffusion coefficient with physical dimension m?s~®. Systems with 0 <
«a < 1 display subdiffusion, meaning that the transport is slower than the normal diffusion, while
values of o > 1 correspond to superdiffusion.
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Slika 1. Schematic depiction of a one-dimensional random walk on a periodic lattice. Reproduced from [5].

In the article we will first use a simple random walk model to derive the diffusion equation
and corresponding MSD. In the following chapter continuous time random walk (abbreviated by
CTRW) model will be presented as the generalization of a random walk. We will show that heavy-
tailed PDFs without finite moments lead to anomalous diffusion. Lastly, two examples that can be
accurately modeled with the CTRW approach will be presented.

2. Random Walk

2.1 Derivation of the Diffusion Equation

To derive the diffusion equation in one dimension we start with a simple random walk on a one-
dimensional periodic lattice. In discrete time steps particle can either jump to the right (j — j+1)
with probability p or to the left (j — j — 1) with probability ¢ = 1 — p, see Fig. 1. We consider the
case of a symmetric random walk, p = ¢ = % Let P,(j) denote the probability that particle is at
site j after performing n steps. The illustrated process can be modeled by the evolution equation

Pasa(i) = 5Pali = 1)+ 5Pali+ 1) @

In order to pass to a continuum limit, we first replace the discrete variables (j, n) by continuous
variables (z, t). The relations between pairs of variables are x = jAz and ¢t = nAt, where Az is
the lattice constant and At is the time span between two successive steps. Then we let both Az
and At approach zero so that we can expand Eq. (4) in a Taylor series around Ax = At = 0. The
lowest orders in the required expansion are

P(jAz, [n+ 1]At) = P(x, t) + Atapgi’t) + O(At?), (5)
P([j £ 1]Az, nAt) = P(x, t) £ A:Eapéf;t) + ;A:ﬁaz];g?t) +O0(Az?). (6)

Substituting these expressions in Eq. (4) and retaining the lowest orders in At and Az leads to the
diffusion equation

OP(x, t) K82P(x, t)

ot 0z2

(7)

Note that the continuum limit has to be drawn such that the quotient

Az?
K= 1 — 8
At,ir:f:l—m 2At (8)
is finite. K denotes the diffusion coefficient and is of dimension [K] = m2s~!. For more detailed

derivation see Ref. [6].
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2.2 Mean Squared Displacement

In this section we discuss how the MSD (2) emerges from the simple random walk model depicted
in Sec. 2.1. Let Axq, Axo, ..., Az, be the displacements of test particle in the 1st, 2nd, ..., n-th
step. Then the position of the particle after n steps is given by the sum of single-step displacements

=Y Auy 9)
=1

The MSD of a particle after n steps is given in terms of jump-jump correlation function (Ax;Axy),

n 2 n n
(a3,) = <<Z A:UZ) > = Z (AziAzy) = Z(Amf) + Z (Az;Axy) . (10)
i=1

i, k=1 i=1 itk A i, ke{l,n}

Since the jumps are assumed to be independent with zero average and thus uncorrelated the last
term in the Eq. (10) vanishes. As the MSD of one jump is (Ax?) = Ax? and it takes At to complete
each step we obtain the following expression for MSD,

Az?

2\ _ 2 _ 217
(z;) =nAz” = As t. (11)

Comparing the Eq. (11) and definition of diffusion coefficient (8) we can rewrite MSD in the form
(22) = 2Kt, which is exactly the known MSD expression (2) [7].

3. Continuous Time Random Walk

The continuous time random walk model can be viewed as a direct generalization of the random
walk described in Chapter 2. Consider a particle starting at the origin = 0. Before it makes an
instantaneous jump to the left or right it waits a random time 7 drawn from the waiting time PDF
(7). The length of the jump [ can also be chosen to be a random variable, distributed according
to PDF w(l). After the jump, a new pair of waiting time and jump length is drawn from the PDFs
(1) and w(l). The described model will be considered under the assumption that the new pairs of
7 and [ are fully independent of their previous values. Moreover, we will assume unbiased CTRW
process, meaning that the jump length distribution is symmetric, w(—I) = w(l) such that (I) = 0
8].
With these definitions a CTRW can be described with the recursion integral equation [9]

“+o0

p(x, t) = §(x)¥(t) +/0 Wt —t) {/ w(x — 2 p(a, t)da'| dt’, (12)

—00

which relates the PDF p(z, t) of particle being at position x at time ¢ with an event of being at
point z at instant ¢, p(z’, ¢'). W(t) = [ ¢ (7)d7 denotes the survival probability that at time ¢
particle is still at the origin x = 0. For many purposes the integral equation (12) can be easily
treated by using Fourier and Laplace transforms, see Refs. [5], [9], [10]. However, in this article we
will restrain from any long derivations and in the following only state the results.

Different types of CTRW processes can be categorized by the characteristic waiting time

(r) = /0 " rp(r)dr (13)

and second moment of jump length PDF w(l)

(1) = /%o Pw(l)dl (14)

— 00
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being finite or diverging, respectively. The main input is therefore the form of PDFs ¢ (7) and w(l).

Let us first study both moments () and (I?) being finite. In the limit of large number of jumps
this type of CTRW corresponds to Brownian motion with MSD (2), where the diffusion coefficient
is defined as K = (12)/2(r). Apart from moments affecting the value of K, the details of PDFs
Y (7) and w(l) are irrelevant for the normal diffusive process [8]. This is a direct consequence of
central limit theorem stating that properly normed sum of a set of random variables, each with
finite variance, will tend toward a Gaussian distribution as the number of summands increases [5].

If ¥(7) and w(l) are heavy-tailed distributions the moments diverge and thus give rise to ano-
malous behavior. In other words, as the heavy-tailed distributions have exponentially unbound
tails, some extremely large waiting periods or jumps will occur and dominate the particle’s beha-
vior. See Fig. 2 for comparison of CTRWs of exponential waiting time PDF with finite moment
(1) and heavy-tailed power-law distribution with diverging (7). We can observe that in the case
of heavy-tailed PDF jumps happen quite irregularly, also when the time progresses probability for
longer rests increases.
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Slika 2. Trajectories of a CTRW with a Gaussian distribution of step length and exponential distribution of waiting
times, ¥(7) = e”?, in case (a) and power-law distribution of waiting times, 1(7) ~ =3/, in case (b). Barcode-like
pattern at the bottom represents events of jumps. Reproduced from [5].

3.1 Subdiffusive Continuous Time Random Walk

We assume that jump lengths are sufficiently narrowly distributed such that (I?) is finite and the
waiting times are drawn from PDF that behaves asymptotically (7 — 0o0) as power law

LN 1 15

P(T) ~ e <a< 1, (15)

in which the constant 7y is a scaling factor corresponding to some fundamental time scale of the

process [8]. In Eq. (15) the lover bound (0 < «) assures ¢(7) to be normalized, while the upper

bound corresponds to finite (7). Such waiting time distribution leads to anomalous behavior with
MSD:

(z(t)?) ~ Kqt®, (16)

where the generalized diffusion coefficient is defined as K, = :@ [10].

To derive MSD (16) from waiting time PDF (15) in exact manner we would first have to Laplace
transform ¢ (7) and then perform further calculations in Fourier-Laplace space using transformed
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expression for particle’s PDF (12). As such approach is out of scope for this article, we will only
present a simple example to illustrate how MSD scaling can be estimated from waiting time PDF.
We have a heavy-tailed waiting time PDF (o = 1/2) of the form
exp (—a/T

wir) ~ ST, (7)
where a is some positive constant. Waiting time distribution with same asymptotic behavior,
~ 773/2 is shown in the Fig. 2(b). 1(7) (17) is a Lévy stable distribution, meaning that it preserves
its shape under convolution. PDF ¢, (t) to make n steps up to time t = 71 + 70 + ... + 7, is given
in the form of convolution

ou(t) = /0 " pna (()(t — )t (18)

where ¢,,_1(t') denotes the probability to make n— 1 steps up to time ¢'. Since 1(7) (17) is a stable
distribution, generalized central limit theorem can be applied [11]. For our selection of ¢ (1) (17)
this means, that in the limit of n — oo rescaled sum of n waiting times, %, tends to Levy stable
distribution independent of n and of the same form as ¢(7). From this we can deduce that the time
in which n steps are preformed grows with n?; number of steps up to time ¢ scales as n(t) ~ /2,
MSD can be calculated as (x2(t)) = (I?){n(t)), where (n(t)) is a mean value of number of steps n
up to time ¢. On approximating (n(t)) with n(t) we get

(2?(t)) ~ /2, (19)

which is in agreement with Eq. (16).

3.2 Lévy Flight

We study a case with finite waiting time (7) and jump lengths being distributed symmetrically in
terms of the asymptotic power-law PDF
lﬂ

0 0<p<2, (20)

w(l) ~ |l|1+u7

in which [y is a scaling factor. In Eq. (20) upper bound (u = 2) corresponds to the finite (I2). Unlike
in the case of subdiffusion, here the model solutions cannot be characterized by the second moment.
Since the (I2) is infinite also the distribution of particle’s final position has infinite MSD. However,
for § < p fractional moment can be calculated [10],

<|x(t)|ﬁ> —2 /0 " Ppla, t)de ~ (K0P, (21)

where K, = I[j/{ 7). PDF p(z, t) in the above equation is obtained by first inserting Laplace
transform of waiting time PDF and Fourier transform of jump lengths PDF (20) in Fourier- Laplace
transformed Eq. (12) and then transforming it back to the (z, t) space. If we rescale fractional
moment (21) according to

()" o (1t (22)

we can see the superdiffusive character. In contrast, there are other strategies that make (x2(t))
finite while retaining some properties of the power-law distributions. The most straightforward
approach is to introduce a cut-off at the large value. Such distribution would have finite second
moment and would thus in the limit of large number of jumps converge to Gaussian distribution
with transient superdiffusive behavior. An alternative way that seems more physically justified is to
penalize long jumps with long waiting periods, meaning that we couple ¥ (7) and w(l) with respect
to some finite velocity. Such process is the so-called Lévy walk [12].
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4. Examples of Anomalous Diffusion

4.1 Subdiffusion of Molecules in Living Cells

4.1.1 Weak Ergodicity Breaking

Due to experimental difficulties or lack of suitable technology researchers were usually interested
in ensemble-averaged quantities. However, with the development of single-molecule spectroscopy
tracking of an individual molecules became possible. In contrast to ensemble averages, in single-
molecule tracking one measures long trajectory of an individual particle in terms of time series r(t')
over a total trajectory duration T'. Time-averaged MSD is then given by

T—t

() = s B @) o, (23)
which integrates the squared displacement between the trajectory points separated by time lag t.
In case of ordinary diffusion, equivalence (r?(t))7 = (r2(t))ens holds for times ¢ < T, provided that
measurment time 7" is large compared to the time scale (7). This equivalence marks that a system is
ergodic [5]. Since in subbdifusive CTRW heavy-tailed waiting time distributions (15) yield infinite
(1), equivalence can not be reached, despite of a long measuring time. Therefore CTRW leads to
weak ergodicity breaking. To compare theoretical CTRW model and experiment, double averaging
is performed, which can be performed in desired order. Using ensemble-averaged MSD (16) we get
a rough approximation:

1 T

T
(P Oy = 7y | 00+ e = 2Dt = 552 [Ty a2

where A is some numerical prefactor. Assuming that ¢ < T, we obtain

t
<<r2(t)>ens>T ~ AK&m' (25)

We see that such double average behaves as if diffusion was normal ((r?(t)) = AK.gt and that

ens>T
the effective diffusion coefficient depends explicitly on the averaging time T'.

4.1.2 Experiment

Here we present an example of subdiffusive transport of a potassium channel protein in the mem-
brane of human kidney cells reported by Weigel et al. [13]. They presumed that anomalous behavior
is the consequence of transient immobilization of channel protein due to its binding to actin cyto-
skeleton. Such bindings result in long rests, which is typical of CTRW model. Experiment was done
by using total internal reflection fluorescence microscopy that enabled tracking channel’s position
with nanometer accuracy. In order to compare time and ensemble averages they acquired 1015 tra-
jectories, many of them longer than 10 min. They examined the time-ensemble-averaged MSD for
all data at different lag times ¢. Figure 3(a) shows double averaged MSD against the measurement
time T'. For small T" fluctuations can be observed, but for times T" larger than 3 seconds MSD scales
as power law <<r2>T>ens ~ T with a = 0.90 4 0.01. Moreover, researchers were able to measure
waiting time distribution by observing channel’s immobilization. They identified the events in which
the channel remained confined within a radius R%H < MSD and constructed the distribution of
waiting times from these events. Figure 3(b) displays waiting time distribution for three different
radial thresholds. From the slope exponent o = 0.9 can be identified, which corresponds to the
value of measured MSD.
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Slika 3. (a) Ensemble-time-averaged MSD of tracked channels for different lag times ¢. The MSD is plotted against
the measurment time 7 used in the moving average. The straight lines show a power-law fit MSD~ 7% !, with a slope
a—1=—-0.1 (b) Measured distribution of waiting times using different radial thresholds. The dashed line indicates
a power law ¥(7) ~ 1/7-%*) with a = 0.9. Reproduced from [13].

4.2 Superdiffusion in Monkey Behavior

In the study [14] of foraging patterns of free-ranging spider monkeys in the forest of the Yuca-
tan Peninsula, Mexico, researches discovered that monkeys trajectories closely resemble CTRW.
Both the distribution of waiting times between moves and distribution of continuous moves in the
same direction could be approximated by previously introduced power-law functions, Eq. (15) and
Eq. (20). Competition between long stops and long jumps [10] leads to MSD that scales as

(r(t)) ~ t2tor, l<pu<?2 0O0<a<l, (26)

where o and p correspond to exponents in waiting time (15) and step length (20) PDF's, respectively.
Note that in the sections 3.1 and 3.2 we studied only the cases with either infinite waiting time or
infinite second moment of step lengths distribution, while the other one being finite. Here, both
PDFs are approximated by power-law and thus have infinite moments. The MSD (26) is therefore
a result of a more complicated theory that takes into account both effects, see [5] and [10].

Data were collected in the area of the forest surrounding the Punta Laguna lake, between
September through December 1999. On 20 days during this period, a different adult monkey was
chosen as a focal point and was followed by at least two observers from dusk to dawn, taking an
instantaneous sample of its location every 5 minutes. The location was estimated with respect to
previously established map that used special landmarks, trees and trails. The trajectory of each
monkey consisted of paired coordinates, one for each 5 min interval where a sample had been
recorded. A step was defined as an interval in which any or both of the successive coordinates
changed. The length of each step was the linear distance between two consecutive positions. To
analyze the distribution of the step lengths bin size of 10 m was used. Then the data were log-log
transformed and the best fit was evaluated using a least-square method, see Fig. 4(a). Waiting times
were obtained from the number of samples in which the focal animal did not change position. The
waiting time distribution was then analyzed using a bin size of 5 min and then log-log transformed to
produce the best fit using least-square method, see Fig. 4(b). The mean squared displacement (r?(t))
was calculated in the following manner: first, the length of the line connecting the first recorded
location of each individual with its location at different times thereafter was measured. Then, all
individual squared displacements were averaged for each time of day. Researches considered only
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Slika 4. (a) Distribution of the number of 5 min intervals N(z) during which spider monkeys traveled a distance of
x m. A total of 841 5 min intervals from 20 adult individuals are included. Inset (b) displays log-log transformed
data N(z) that is fitted with power-law relationship, N(z) « z®. The estimated value of the exponent is —2.18. (c)
Log-log plot of distribution of waiting times (intervals N (¢) with duration ¢). The relationship is fitted by a power-law
function, N(t) o t°, with an estimated value of the exponent of -1.7. Reproduced from [14].

the MSD between 6:30 and 10:30 am. After this period the MSD decreased as the animals started
to approach their starting point, see Fig. 5(a). From Figs. 4 and 5 we see that the log-log plot of the
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Slika 5. (a) MSD across all individual trajectories at different times of day with a maximum at 1030 hours. (b)
Log-log transformation of the MSD observed from 0630 to 1030 hours. Transformed MSD is well fitted by a power-law
function, (R?(t)) o< t¢, with an estimated value for the exponent of 1.7. Reproduced from [14].

data is fitted well by a negative power-law function in both distributions. By comparing functions
used for fitting in Fig. 4 with waiting time PDF (15) and jump length PDF (20) we observe that
the relations between fitting parameters b, a and o, p go as @« = —b—1, up = —a— 1. Using Eq. (26)
we can now predict the value of ¢

c=24a—pu=2—-b+a=152, (27)

which is quite close to the observed value 1.7 in Fig. (5)(b). To sum up, with this study researches
showed that the step lengths distribution and the distribution of waiting times between steps behave
as power-law functions. Moreover, the theoretical model (26) was shown to be rather accurate in
predicting MSD scaling with time.
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5. Conclusion

Anomalous diffusion can be observed in numerous systems from various disciplines including physics,

chemistry, engineering, geology, biology, economy, meteorology, astrophysics and others. However,

there is no universal physical and mathematical model to describe such processes. Due to many

different physical mechanisms there are many models to describe anomalous diffusion, see [9]. In

this article we focused on CTRW that can be successfully used to model systems where long waiting

times or long jumps occur.
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