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MAGNETNI GRADIOMETER Z ULTRAHLADNIMI ATOMI CEZIJA NA
OSNOVI ENE SAME STERN-GERLACHOVE SLIKE
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Magnetno polje lahko merimo preko Larmorjeve precesije atomske magnetizacije. V članku je pojasnjena dinamika
magnetizacije v magnetnih poljih, vključujoč Larmorjevo precesijo in Rabijeve oscilacije ter uporaba Stern-Gerlachove
metode za zaznavanje projekcije magnetizacije hladnih cezijevih atomov. Predstavljena so eksperimentalna opažanja
teh pojavov in demonstracija metode za merjenje ene komponente tenzorja magnetnega gradienta na osnovi ene same
Stern-Gerlachove slike.

SINGLE-SHOT STERN-GERLACH MAGNETIC GRADIOMETER WITH ULTRACOLD CESIUM
ATOMS

The magnetic field can be measured through Larmor precession of the atomic magnetization. In this article the
dynamics of magnetization in magnetic fields is explained, including Larmor precession and Rabi oscillations, and
the use of the Stern-Gerlach method to probe the magnetization projection of cold cesium atoms. Experimental
observations of these phenomena are presented, including a demonstration of a magnetic gradiometer capable of
measuring one component of the magnetic field gradient tensor in a single shot.

1. Introduction

Atomic vapour magnetometers are the most sensitive devices for measuring magnetic fields reaching

sensitivities up to 10−15 T/
√

Hz [1]. The basic principle behind this type of magnetometers is the

precession of spins in a magnetic field. The phenomenon is called Larmor precession and its fre-

quency is proportional to the magnitude of the magnetic field. The idea for an optical magnetometer

with atomic gas was proposed by Dehmelt in 1957 and experimentally demonstrated by Bell and

Bloom in the same year [1]. In a typical atomic magnetometer the probe atoms are in a glass bulb

at room temperature and the precession is observed through the rotation of the polarization of light

due to the Faraday effect.

Techniques for cooling and trapping atoms, developed in the last decades of the last century,

enable us to prepare clouds of atoms with temperatures close to absolute zero. Cold atoms are very

suitable for use in precise measuring because of their long lifetimes and small Doppler broadening

[2]. In magnetometry the limiting factor is usually the small sizes of atom clouds. The number of

atoms in a cloud is typically an order of magnitude smaller than in cells with hot atom vapour,

despite their large density. Consequently, signals proportional to the number of atoms are very

small and difficult to measure. The sensitivity of cold magnetometers does not reach that of the

best devices with hot atom vapours, but they are very suitable for measurements with a high spatial

resolution, because of the small size of the clouds [1].

Typically, cold atom magnetometers use the same technique as room-temperature atomic vapour

magnetometers to detect the signal – Faraday rotation. However, in case of cold atoms this is not

the only option for detecting spin precession. The projection of the magnetization can be measured

through the populations of Zeeman sublevels using the Stern-Gerlach method, as done in Ref. 3 to

measure the magnetic field through Larmor precession. Another option is state-selective absorption

imaging used in Ref. 4, where only the atoms that have left the initial magnetic sublevel are

detected.

Sensors of the magnetic field and its gradient are used for a wide variety of applications from

detecting anomalies in geomagnetic fields to measuring NMR signals and magnetic signals of the
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brain and heart in medicine [1, 5]. The advantage of measuring the gradient is that it provides

information about the magnetic field without the background magnetic noise. A basic gradiometer

consists of two magnetometer probes separated in space and the magnetic gradient is derived by

differentiating their output. This way any common-mode noise on the two probes cancels out.

Magnetic gradiometry using two clouds of cold atoms is demonstrated in Ref. 6. In their ex-

periment the positions of the two clouds is variable, thus enabling the measurement of the whole

gradient tensor. If an elongated atomic cloud is used instead of two separate clouds, this allows

measurements of the spatial profile of the magnetic field. If the magnetic field was completely ho-

mogeneous, the whole cloud would precess in phase. But in a magnetic field gradient the precession

frequency changes along the cloud, causing a helical or ”corkscrew” spatial dependence of the mag-

netization direction observed in Refs. 7 and 8. A technique of measuring the magnetic gradient

based on this observation is described in Ref. 4.

In the first part of this article, the theoretical principles behind magnetometry with cold cesium

atoms using the Stern-Gerlach method are described. In the second part we present experiments

done in the Cold atom laboratory at Jožef Stefan Institute, including a single-shot method of

measuring one component of the magnetic field gradient tensor.

2. Theoretical description

2.1 Cesium atoms

Cesium is an alkali metal, hence it has only one valence electron. Its only stable isotope is 133Cs.

The angular momentum of an atom is a sum of electron spin S, electron orbital angular mo-

mentum L and the nuclear angular momentum I. The energy levels of an atom are determined to

first approximation by the electron orbital angular momentum quantum number L. These levels are

split into the fine structure, which is a result of spin-orbit coupling and is described with the total

electron angular momentum J = L + S. A further splitting resulting in the hyperfine structure is a

consequence of the coupling of J with the nuclear angular momentum I, yielding the total atomic

angular momentum F = J + I.
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Figure 1. Energy levels of the ground and first excited state of cesium atoms. The energy splittings are not to scale.
Adapted from [9].

In the cesium ground state the valence electron is in the orbital with L = 0 and has a spin S =

1/2, so the total electron angular momentum is J = 1/2. Because the nuclear angular momentum

of cesium is I = 7/2, the hyperfine structure splits the ground state into levels F = 4 and F = 3,

from which the latter has the lower energy. The energy level structure of the ground state and the

first excited state of a cesium atom is shown in Figure 1.
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2.2 Interaction of atoms with a magnetic field

Interaction of a magnetic dipole moment µ with a magnetic field B is described by the addition of

the Zeeeman term

HB = −µ ·B (1)

to the Hamiltonian. The magnetic dipole moment of an atom is proportional to its total angular

momentum F as µ = γF, where γ is the gyromagnetic ratio.

Each hyperfine level consists of 2F + 1 magnetic sublevels, that are degenerate in the absence

of an external magnetic field. In the presence of a magnetic field, the difference in energy of

neighbouring sublevels is ∆E. The sublevels are described by the operator of projection of the total

angular momentum on the quantization axis, that is the direction of the magnetic field. For the

magnetic field in the z-direction, B = (0, 0, Bz), this operator is Fz and its eigenvalues are ~mF ,

where mF is a quantum number with 2F + 1 possible values, ranging from −F to F in steps of 1.

F is a good quantum number if the energy difference between Zeeman sublevels is small in

comparison to the hyperfine splitting. In that case the Zeeman Hamiltonian can be written as

HB = −µBgF
~

F ·B, (2)

where gF is the Landé g-factor. Comparing the equations (1) and (2), we can see that the gy-

romagnetic ratio is γ = µBgF
~ . For the cesium ground state, F = 3, the gyromagnetic ratio is

γ/2π = −3.5 Hz/nT.

The Hamiltonian can further be written as HB = −µBgF
~ FzBz and the correction to the hyperfine

energy is E = −µBgFmFBz. The energy difference between neighbouring Zeeeman sublevels,

∆mF = 1, is

∆E = µBgFBz = γ~Bz. (3)

2.3 Larmor precession and Rabi oscillations

Magnetization of an atomic ensemble is defined as M = 1
V

∑
iµi, where the sum runs over all the

atoms and V is the volume containing the atoms. In large ensembles the magnetization can be

described classically [10].

The torque on a magnetic moment µ in a magnetic field B is µ × B. According to Newton’s

second law this torque is equal to the time derivative of the angular momentum Γ,

dΓ

dt
= µ×B. (4)

By multiplying this equation with γ/V and taking into account the connection between the magnetic

and angular moment γΓ = µ, we get Bloch’s equation

dM

dt
= M× γB. (5)

This equation describes Larmor precession of the magnetization around the direction of the external

magnetic field with the Larmor angular frequency ω0 = γB where B = |B| is the magnitude of

the applied magnetic field. The Larmor frequency corresponds to the energy difference between

neighbouring Zeeman subleves ∆E = ~ω0.

For the description of relaxation mechanisms, the Bloch equations have additional phenomeno-

logical terms that describe the deterioration of the signal with characteristic times T1 and T2. T1 is

the longitudinal relaxation time, the time in which magnetization relaxes into its equilibrium state

in the direction of the magnetic field. T2 is the transversal relaxation time, describing the decay of

the transversal component of the magnetization.
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The solutions of Bloch equations with the phenomenological relaxation terms, in case the mag-

netic field is constant in z-direction and the equilibrium magnetization is M0, are

Mxy = Mx(0)e−iω0te−t/T2 ,

Mz(t) = M0 − (M0 −Mz(0))e−t/T1 ,

where Mxy = Mx + iMy [2].

Suppose we add an oscillating magnetic field in the x-direction. It can be treated as a sum of

two circulating components

B′(t) = 2B′(cosωt, 0, 0) = B′(cosωt, sinωt, 0) +B′(cosωt,− sinωt, 0).

In a system with a static magnetic field Bz in z-direction it is simpler to describe magnetization in

a rotating coordinate system where the x′- and y′-axes rotate around the z-axis with the angular

frequency ω0 = γBz and the z′-axis is the same as z. In this coordinate system the magnetization is

static and is effectively not influenced by Bz. If the frequency of the additional oscillating magnetic

field equals the Larmor frequency, one of its components is static in the rotating reference frame.

The other one is oscillating with double the Larmor frequency and its contribution averages to zero.

Because of the static component of the added magnetic field, the magnetization precesses around

the x′-axis of the rotating coordinate system with the frequency Ω = γB′. This phenomenon is

called Rabi oscillation and Ω is the Rabi frequency.

Starting from the equilibrium magnetization in the z-direction, the pulse of an oscillating mag-

netic field causes the magnetization to tilt from the z-axis for a certain angle, determined by the

length of the pulse. Usually π/2 and π pulses are used. With a π/2 pulse the magnetization rotates

from z-direction to the xy-plane. After a π pulse, the direction of the magnetization is the exact

opposite of the initial magnetization. These pulses of the magnetic field are often referred to as RF

pulses because in the experiments the Larmor frequency is in the radio-frequency range.

2.4 Stern-Gerlach method

Populations of mF components after rotating a spin F from the initial state mF = F by an angle

can be calculated by applying the rotation matrix to the initial vector. The probability that we

measure an atom in a certain mF state, depending on the angle of rotation, is shown in Figure 2, for

F = 3. We can see that the only pure states we can get with a rotation are mF = F and mF = −F .

In any other case the state is a combination of multiple neighbouring mF states.
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Figure 2. The population of each of the mF components depending on the angle of rotation. Adapted from [2].

By placing an atom cloud in a magnetic field gradient, atoms in different Zeeman sublevels

can be spatially separated. Usually a strong magnetic field gradient and a constant homogeneous
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magnetic field in the vertical direction are applied. The constant homogeneous field ensures that the

magnetic field has the same direction over the whole the cloud despite the gradient and the gradient

separates the atomic cloud based on the quantum number mF . That is because an inhomogeneous

magnetic field acts upon a magnetic dipole moment with a force F = µ ·∇B that is proportional to

the projection of the magnetic moment onto the magnetic field gradient. In the case when not all

the atoms are in the same magnetic sublevel, we observe multiple spatially separated clouds. This

phenomenon was first used in the Stern-Gerlach experiment, that is why this type of measurement

is called a Stern-Gerlach measurement.

From the measurement of the number of atoms in each of the Zeeman sublevels NmF , we can

obtain the projection of the magnetization in the direction of the magnetic field gradient

Mz ∝
∑

mF
mFNmF∑

mF
NmF

. (6)

3. Experiments

In this part of the article we present experimental observations of Rabi oscillations and Larmor

precession using the Stern-Gerlach method and two ways of measuring the magnetic field gradient

utilizing these phenomena. The experiments are done with cold cesium atoms held in an optical

dipole trap.

We prepare a cloud of cold cesium atoms by laser cooling with the usual procedure, described in

detail in [11], and transfer them to the dipole trap. There we have approximately 200 000 atoms at

1 µK. As a consequence of the previous cooling stage, the atoms are in the |F = 3,mF = 3〉 state.

3.1 Rabi oscillations

Rabi oscillations occur when applying a magnetic field oscillating with the Larmor frequency in the

direction perpendicular to the static magnetic field. We experimentally observe these oscillations

with the following procedure. Starting with atoms polarized in the z-direction, we turn on the RF

magnetic field in the x-direction with the frequency ω0, that corresponds to the static magnetic field

in the z-direction. After a certain amount of time the RF field is turned off and then the atoms are

separated by their mF with the Stern-Gerlach method and an absorption image of the atom clouds

is taken.

Figure 3. Absorption images of one half of a Rabi oscillation. The images show populations of each of the mF states
after a RF pulse. The length of the pulse is written above each image. Courtesy of Cold atom laboratory at Jožef
Stefan Institute.

Images for increasing lengths of the RF pulses are shown in Figure 3. We determine the number of

atoms in each of the 7 Zeeman sublevels of the cesium ground state and calculate the magnetization

Matrika 7 (2020) 2 5



“clanek Matrika Gosar” — 2020/8/13 — 19:29 — page 6 — #6

Katja Gosar

projection using equation (6). The results in Figure 4a are used to determine the frequency of Rabi

oscillations and the length of π/2-pulses in the following experiments.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9- 4 0 0
- 3 0 0
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0
3 0 0
4 0 0

 

 

Ma
gn

eti
za

tio
n (

arb
. u

nit
s)

R F  p u l s e  l e n g t h  ( m s )

�  =  1 9 0 5  H z

(a)

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0- 4 0 0
- 3 0 0
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0
3 0 0
4 0 0

 

 

Ma
gn

eti
za

tio
n (

arb
. u

nit
s)

T i m e  ( m s )

�  =  4 9 8 4 0  H z

(b)

Figure 4. (a) The z-component of magnetization during Rabi oscillations. (b) Oscillations of the magnetization
projection as a function of the interrogation time due to Larmor precession. On both graphs the dots are measurements
and the black line is a sine function fitted to the data. Courtesy of Cold atom laboratory at Jožef Stefan Institute.

3.2 Larmor precession

Figure 5. Absorption images of Larmor precession. The time written above each image is the interrogation time.
Courtesy of Cold atom laboratory at Jožef Stefan Institute.

To measure the Larmor precession we use the Ramsey sequence of RF pulses followed by a Stern-

Gerlach measurement. A Ramsey sequence consists of two π/2 pulses separated by the interrogation

time t. With the first pulse the magnetization is rotated from the z-direction to the xy-plane, where

it is then left to precess until the second π/2 pulse. The second pulse rotates the spin around

the x-axis, so the y-component becomes the z-component of the spin. Then we perform a Stern-

Gerlach measurement to measure the z-projection of the magnetization, that corresponds to the the

y-projection at the start of the second π/2 pulse. By varying the time between the two pulses, we

observe the oscillations of the projection with the frequency of Larmor precession. The absorption

images are shown in Figure 5 and the magnetization as a function of time in Figure 4b.

3.3 Gradiometry with two atom clouds

To measure a component of the magnetic field gradient we simultaneously perform the measurement

of Larmor precession on two atom clouds. From the phase difference between them the difference

in the magnetic field is determined.
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Figure 6. Schematic illustration of the experimental setup for the experiment with two atom clouds, that are in
dipole traps. The directions of the imaging beam and the static and RF magnetic fields are shown.

Each of the clouds consists of approximately 200 000 atoms and the clouds are separated by

approximately 300 µm. The experimental setup is schematically shown in Figure 6. Because the

magnetic field is not homogeneous, the precession frequencies are not the same for the first and the

second cloud. All atoms start with the same phase, but with time, the phase difference accumulates

as

φ(t) = ω2t− ω1t

= γ (B(~r2)−B(~r1)) t

≈ γt (~r2 − ~r1) · ∇B.
(7)

The phase difference is therefore a measure of the derivative of the magnetic-field strength B along

the axis of the two probes x. In our case B = Bz, d = |~r2 − ~r1| and we can write

∂Bz
∂x

=
φ

γtd
. (8)

Figure 7. Absorption images of Larmor precession of two atom clouds. The first image shows the two clouds
precessing in-phase. The bottom image shows the clouds at longer interrogation times, when the clouds are out of
phase. Courtesy of Cold atom laboratory at Jožef Stefan Institute.

In Figure 7 we show an example of two atoms clouds precessing in and out of phase, i. e.,

with the phase difference π. There are two ways of determining the phase difference from the
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measurements. We use the simpler option where the phase difference is determined by fitting a sine

function to the measured magnetization. In the fit the frequency is kept constant and the phase

is determined as a function of time for each atom cloud separately. The other option is to fit an

ellipse to parametric plot of the magnetization of the two clouds as in Ref. 6. On the horizontal

axis we put the magnetization of the first cloud and on vertical axis the magnetization of the second

cloud. For measurements that differ very little in the interrogation time, the phase difference is

practically constant and the points on this parametric plot trace an ellipse, from which a phase

difference is obtained. Examples of these ellipses for different phase differences are shown in Figure

8. In both approaches, the accumulated phase difference can not be determined without the whole

time dependence from the start, otherwise it could differ from the measured phase for a multiple of

2π.
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Figure 8. The relative phase between the two probes can be calculated from the shape of the ellipse that is the
parametric plot of the magnetizations: Mz1 ∝ sin(t), Mz2 ∝ sin(t+ φ).

Figure 9. Phase difference between the two atom clouds is a linear function of time and the magnetic field gradient
is proportional to the slope. The measurements were done in different gradients created by different voltages on the
quadrupole coil. Courtesy of Cold atom laboratory at Jožef Stefan Institute.

We plot the time dependent phase in Figure 9 and fit a linear function to the experimental

data. The gradient is calculated from the slope of the linear function using equation (8). The

different colored measurements are for different voltages on the quadruple coil in the x-direction,

which creates the gradient. In the insert the measured magnetic gradient is plotted as a function of

the quadrupole coil voltage.
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3.4 Gradiometry with an elongated atom cloud

The method of measuring the magnetic field gradient with two atom clouds has many flaws. A

series of measurements is needed, because the whole evolution of the phase difference is required.

Additionally, the analysis of the measurements is complicated, especially if using the ellipses to

determine the phase difference. A better way to measure the magnetic field gradient is the mea-

surement of position dependent Larmor precession on an elongated atom cloud. This way the phase

is measured as a function of the position and the gradient can be determined from a single shot.

A magnetic field gradient causes the precession phase to change along the cloud. Using the

linear approximation for the position dependence of the magnetic field B(x) ≈ B0 + ∂Bz
∂x x we can

write the magnetization as a function of the time and the position as

Mz(x, t) = M0 cos

(
γB0t+ γ

∂Bz
∂x

xt

)
. (9)

Figure 10. Schematic illustration of the experimental setup for the experiment with an elongated atom cloud,
showing the direction of the static and RF magnetic fields and the direction of the imaging beam.

In the experiment the atoms are cooled the usual way in an optical trap that is made by two

crossed laser beams. To create an elongated atom cloud one of them is turned off and the cloud

expands along the remaining beam, as it is shematically shown in Figure 10. Then the same

experimental sequence is used as in the previously described experiments. We take an absorption

image and from it the magnetization as a function of the position is calculated. Both are shown in

Figure 11. We fit the theoretical function cos(kx+φ) to the measured magnetization, to determine

the wave number k = γ ∂Bz
∂x t. Since the interrogation time t is known we get the gradient ∂Bz

∂x from

a single image.

We test the accuracy of our measurement by repeating the same experiment multiple times and

for different interrogation times. The results are shown in Figure 12 where we plot the wave number

k as a function of the interrogation time. We get a better estimate of the true value of the gradient

by fitting a linear function and calculating the gradient from the slope. The measurements should

lie on a line that goes through the origin, but for our measurements this is not the case. This

means that the initial magnetization has some spatial dependence. That could be a result of the

inhomogeneity of the RF magnetic field. Additionally, we see that the measurement for the longer

interrogation time lies below the line of the other dots. This could be because, in our analysis, we

do not take into account the fact that the cloud is still expanding during the experiment.

Even for non-expanding atom clouds the range of interrogation times suitable for this experiment

is limited. In principle the precision of the measurement of k is higher for longer interrogation times,

where we get more periods of the magnetization projection oscillation along the cloud. But for longer

interrogation times the spatial resolution decreases, because it is limited by the diffusion of the atoms

during that time.
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Figure 11. Absorption images of the Stern-Gerlach measurement of an elongated atomic cloud after different
interrogation times. Below, the magnetization projection is plotted as a function of position. In red the sine function
fit to the measurements is shown. Courtesy of Cold atom laboratory at Jožef Stefan Institute.
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Figure 12. The measured wave number as a function of the interrogation time. Courtesy of Cold atom laboratory
at Jožef Stefan Institute.

4. Conclusion

In conclusion, we demonstrate a single-shot method of measuring a component of the magnetic field

gradient. The magnetic field is probed through the Larmor precession of atomic magnetization,

that is detected via the Stern-Gerlach method. The use of an elongated atom cloud utilizes the high

spatial resolution of cold atoms to probe the spatial dependence of the magnetic field. In contrast

to the method with two atom clouds, the temporal dependence of the magnetization is not needed

to determine the magnetic field gradient, making the measurement simpler and quicker.
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[11] T. Mežnaršič. Lasersko hlajenje cezijevih atomov. Master’s thesis, University of Ljubljana,

2016.

Matrika 7 (2020) 2 11


