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LOCAL DENSITY APPROXIMATION OF SPHERICALLY SYMMETRIC
ATOMIC GROUND STATES

BLAŽ STOJANOVIČ
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Univerza v Ljubljani

The first part of this article discusses the problem of electronic structure and its solutions using density functional
theory. First the Hohenberg-Kohn theorems are stated and proved, then the Kohn-Sham auxiliary system is derived
using their ansatz and finally different approximations of the exchange correlation functional are discussed. The second
part focuses on the numerical implementation of the restricted spherically symmetric local density approximation. This
method is then used to calculate atomic ground-states and their first ionisation energies. The results are compared
with experimental data and show good agreement.

APROKSIMACIJA LOKALNE GOSTOTE ZA IZRAČUN OSNOVNIH STANJ SFERIČNO
SIMETRIČNIH ATOMOV

Članek govori o problemu elektronske strukture in njegove rešitve z uporabo metode gostotnih funkcionalov.
Prvi del članka se posveti teoretičnem ozadju, predstavljena in dokazana sta Hohenberg-Kohnova izreka. Za tem
je izpeljan Kohn-Shamov sistem enačb in obravnavani so različni približki izmenjalno-korelacijskega funkcionala. V
drugem delu je predstaljena numerična implementacija sferično povprečene aproksimacije lokalne gostote. Metoda je
uporabljena za izračun atomskih osnovnih stanj in prvih ionizacijskih energij. Na koncu je predstavljena primerjava
z eksperimentalnimi vrednostmi.

1. Introduction

In 1929, shortly after Schrödinger’s postulated his famous equation, P.M. Dirac was quoted saying

that the underlying physical laws necessary for the mathematical theory of a large part of physics

and the whole of chemistry are now known. Applying these laws however leads to unsolvable

equations and work needs to be done in developing approximate methods in order to solve such

problems without excessive computation [1]. In the eighty years that have passed since, along with

the developments in computing, many methods for solving the many body Schrödinger equation

have been developed and applied to a variety of problems. Perhaps the most popular ab initio1

method, the Hartree-Fock method (HF), was proposed in the 1930s [2] and further simplified and

popularized in the 1950s by Slater [3, 4]. In the following decades a lot of work was done to develop

methods that include electron correlations, which HF neglects. Such approaches are known as post-

Hartree-Fock methods, the most famous being Coupled Cluster (CC) and Configuration interaction

(CI) methods.

Perhaps the most important paradigm shift that occurred in the field of computational quantum

chemistry in the last century happened in the 1960s, when Density Functional Theory (DFT) was

put on firm ground in two seminal papers. The 1964 paper co-authored by Hohenberg and Kohn [5]

built on the ideas of Thomas [6] and Fermi [7], and showed that the electron density n(r) of the

ground state of a quantum many-body system plays an important role and that all properties of

the system can be considered as functionals of the ground state density. The second paper was

the work of Kohn and Sham [8], which replaced the difficult many-body system with an auxiliary

system that can be solved more readily. The Kohn-Sham approach forms the basis of most modern

DFT approximations that are used for treating electrons in atoms, molecules, condensed matter

and chemical processes. Density functional theory represents a shift from a wave function approach,

that HF and its descendants use, to a density based approach, where instead of the many body

1From first principles
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wave function the electron density plays a central role. This shift began a new era in computational

chemistry and culminated in the 1998 Nobel price being in part awarded to Kohn.

In his Nobel lecture [9] Kohn emphasized two different contributions of DFT to physics. Firstly

the contribution to understanding, as the density approach provided an alternative line of thought to

the truncated Hilbert space of single particle orbitals, which becomes incomprehensible when many

Slater determinants are used. Instead it focuses on quantities2 in real 3-dimensional coordinate

space, first and foremost the electron density n(r), which are easily visualizable and provide physical

insight into the problem. And secondly, the method is applicable to larger systems than wavefunction

based approaches, as the Hohenberg-Kohn formulation is defined completely in terms of n(r), while

the Kohn-Sham formulation is defined completely in terms of single particle wave functions ψi and

n(r) and thus avoids the Van Vleck catastrophe [10].

The rest of this paper is structured as follows. This introduction is followed by the theoretical

underpinnings of the method. In the second part a basic numerical implementation is presented

and applied to ground state energy calculations of spherically symmetric atoms.

2. Theoretical Background

In the context of electronic structure calculations, which we will focus on, it can be assumed that

the nuclei are stationary as their mass is very large in comparison to that of the electrons. This

is known as the Born-Oppenheimer approximation. In the absence of magnetic fields and ignoring

relativistic effects, the Hamiltonian of the system is

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

kinetic energy

electron-nucleus︷ ︸︸ ︷
−
∑
i,I

Zi
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj |︸ ︷︷ ︸
electron-electron

nucleus-nucleus︷ ︸︸ ︷
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

, (1)

where ri and RI are electron and nucleus positions and nucleus charges are denoted by ZI . We

adopted Hartree atomic units ~ = me = e = 4π
ε0

= 1. We are searching for stationary electronic

states, these are described by wave functions Ψ(r1, r2, . . . , rN ) and satisfy the stationary many-

electron Schrödinger equation

ĤΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ). (2)

Suppose we are only interested in the ground state of the system. In the wave function picture

this is calculated numerically by minimizing the functional of the energy while adhering to the

Rayleigh-Ritz minimal principle,

E = min
Ψ
〈Ψ|Ĥ|Ψ〉 . (3)

This sort of approach, while very successful for systems with a few electrons, becomes computa-

tionally infeasible for larger systems which are of great interest in physics and chemistry. This is

due to the parameter search space increasing exponentially. Even ignoring spin effects our wave

function has 3N continuous variables, say we discretise each of these variables using a p point mesh,

we would need p3N mesh points to represent Ψ. On the contrary the electron density of the system

n(r) = 〈Ψ|n̂(r)|Ψ〉 , where n̂(r) =
∑

i=1,...,N

δ(r− ri) (4)

2Along with n(r) these are the electron exchange correlation hole nxc(r, r
′) and the linear response function

χ(r, r′, ω).
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is a function of the three coordinates only and we would need only p3 mesh points to represent

it. This is ultimately the reason for the computational success of DFT. Of course using electron

density as the “basic” variable instead of the wave function, has in it of itself no value unless we

can calculate all the system properties of interest from it. This issue was resolved by Kohn and

Hohenberg in 1964.

2.1 Hohenberg-Kohn theorems

Hohenberg and Kohn managed to formulate density functional theory as an exact theory of many-

body systems. Their formulation applies to the Hamiltonian (1), and is summarized in two theo-

rems [11]:

Theorem 1. For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, up to an additive constant, by the ground state electron density

n0(r).

Figure 1. The Hohenberg-Kohn theorems close the loop between the external potential and ground state density,
adapted from [11]

Proof. The theorem is proved by contradiction. Suppose there exist two external potentials V 1
ext

and V 2
ext, that differ by more than a constant and result in the same ground state electron density

n0(r). The potentials give two different Hamiltonians Ĥ1, Ĥ2 that lead to two different ground

states Ψ1 and Ψ2. Under the assumption that the ground states are not degenerate3 we see that

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 (5)

Rewriting the last term

〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 = E2 +

∫
(V 1

ext(r)− V 2
ext(r))n0(r)dr (6)

Hence

E1 < E2 +

∫
(V 1

ext(r)− V 2
ext(r))n0(r)dr. (7)

and completely analogously, starting from the definition of E2

E2 < E1 −
∫

(V 1
ext(r)− V 2

ext(r))n0(r)dr. (8)

Adding equations (7) and (8) we obtain the contradictory statement

E1 + E2 < E2 + E1 (9)

It follows that two such potentials cannot exist.

From the first theorem it follows that the Hamiltonian is fully determined up to a constant shift in

energy. As a consequence all wave functions, ground or excited, are determined. Meaning that all

properties of the system are completely determined given only the ground state density.

Theorem 2. Energy E[n] can be defined as a universal4 functional of the electron density n(r) and

3We are following the argument of Hohenberg and Kohn. The theorem can be extended to degenerate states as
well. See Levi-Lieb’s alternative formulation of DFT [11].

4Independent of the system studied.
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is valid for any external potential Vext. The ground state energy of the system is a global minimum

of the functional, for any given Vext and the electron density that minimizes E[n] is the ground state

electron density n0(r).

The form of the theorem originally proven by Kohn and Hohenberg is limited to densities n(r)

that are ground state densities of the Hamiltonian with some external potential Vext. Thus the

densities are V-representable5, they define a space of possible densities within which we can construct

functionals. All properties of the system are uniquely determined if a density n(r) is specified,

including the total energy functional

EHK[n] = T [n] + Eint[n] +

∫
Vext(r)n(r)dr + EII ≡ FHK[n] +

∫
Vext(r)n(r)dr + EII (10)

FHK[n] = T [n] + Eint[n] (11)

Where EII is the nucleus interaction energy, we defined the Hohenberg-Kohn functional FHK that

includes the internal kinetic and potential energies of the electron system. As such it is universal

since both the kinetic energy and interaction energy of the particles are functionals of the density

only.

Proof. Let us consider a system with ground electron density n1
0(r) that as a consequence of the

first HK theorem corresponds to the external potential Vext(r). Using (10) we see that

EHK[n1
0] = E1 = 〈Ψ1|Ĥ1|Ψ1〉 . (12)

It follows that by definition of the ground state of Ĥ1 that the energy of any other state n2
0(r) is

greater,

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 . (13)

From (13) we can conclude that the energy calculated using (10), evaluated for the ground state

energy n1
0(r) is lower than the energy evaluated for any other density n(r). Meaning that if the

HK funcitonal is known, then minimizing the energy of the system, with respect to variations in all

V-representable electron densities, finds the ground state density and energy of the system.

While HK theorems provide an exact theory of many-body problems the issue is that the universal

HK functional FHK is not known. Moreover, the theorems do not provide any guidance for finding

the functional. As such the essence of DFT becomes the construction of functionals that give useful

approximations for certain systems.

2.2 Kohn-Sham auxiliary system

When it comes to the actual implementation of DFT one approach could be the minimization of

an explicit energy functional, however this is not the most efficient path. An ansatz for solving the

problem was proposed by Kohn and Sham. They assumed that the ground state density of the

original interacting system is equal to that of another non-interacting system residing in an effective

external potential. The non-interacting system gives rise to independent-particle equations which

are exactly solvable6, while all the many-body terms are included in the effective potential. The

sum of the densities of individual orbitals is the total electron density of the system

n(r) =
∑
σ

N∑
i=1

|φσi (r), |2,
∫
n(r)dr = N. (14)

5In Levi-Lieb’s formulation, the functional is defined for any density n(r), which is termed as N-representability.
6Numerically in practice.
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From now on the explicit reference to spin σ will be dropped. The total functional of the energy (10)

is calculated as

EHK[n] = Ts[n] + Eh[n] +

∫
Vext(r)n(r)dr + EII + Exc[n]. (15)

Where Ts is the single particle kinetic term, Eh is the Hartree term and Exc[n] is the exchange-

correlation term. Ts easily expressed in terms of the single-particle orbitals φi(r),

Ts[n] = −1

2

N∑
i=1

〈φi(r)|∇2|φi(r)〉 . (16)

It is important to note that Ts[n] is not an explicit orbital functional, but an implicit density

functional Ts[n] = Ts[{φi[n]}], as it depends on the whole set of orbitals, each of which is a density

functional itself. The Hartree term Eh is expressed as

Eh[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (17)

We defined the exchange-correlation functional Exc[n] as the difference of the kinetic and internal

energy of the true many-body interacting system and the kinetic and internal energy of the auxiliary

system

The solution to the non-interacting system can be viewed as the problem of minimization of

EKS with respect to the electron density n(r). Remembering that Ts is an explicit functional of

the orbitals and not the density, instead of varying the density one can vary the independent wave-

functions and apply the chain rule where necessary. The minimization condition becomes

δEKS

δφ∗i (r)
=

δTs

δφ∗i (r)
+

[
δEext

δn(r)
+

δEh

δn(r)
+
δExc

δn(r)

]
δn(r)

δφ∗i (r)
= 0, (18)

with normalization constraints

〈φi|φj〉 = δij . (19)

Using the relations
δTs

δφ∗i (r)
= −1

2
∇2φi(r),

δn(r)

δφ∗i (r)
= φ∗i (r) (20)

and the method of Lagrangian multipliers to handle the constraints, we obtain the Kohn-Sham

auxiliary system (
−1

2
∇2 + VKS(r)

)
φi(r) = εiφi(r), (21)

where we defined the Kohn-Sham effective potential as

VKS(r) =
δEext

δn(r)
+

δEh

δn(r)
+
δExc

δn(r)
= Vext(r) + Vh(r) + Vxc(r). (22)

Solving the equations gives the ground state electron density and energy of the fully interacting

system. One issue that remains is that the exchange correlation potential is not known and needs

to be approximated in some way.

2.3 Exchange-Correlation functionals

In their paper Kohn and Sham argued, based on the argument that solids can be considered close

to the limit of the homogeneous electron gas, that the exchange correlation functional Exc[n] can

be treated as a local or nearly local functional of the density [8, 9]. Some of the most important

and widely used approximations of the exchange correlation functional have this quasi-local form.
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LDA - Local Density Approximation

While it is clear that the true form of Exc[n] is complicated, even relatively simple approximations of

it provide satisfactory results. The simplest of all is the local density approximation, which assumes

that the exchange-correlation energy at each point is that of a homogenous electron gas with that

density. Thus integrating over all space gives the exchange-correlation functional

ELDA
xc [n(r)] =

∫
n(r)εxc(n(r))dr =

∫
n(r)εx(n(r))dr +

∫
n(r)εc(n(r))dr. (23)

The exchange part of the energy εx(n), can in fact be calculated analytically [11]

εx(n) = −3

4

(
3

2π

) 2
3 1

rs
where rs =

(
3

4πn

) 1
3

(24)

rs is the radius of a sphere that contains one electron. On the other hand εc(n) is not analytically

known and determining the correlation energy of a homogenous interacting electron liquid is not a

trivial problem in itself. The earliest approaches for calculating εc(n) used perturbation theory7,

but such approaches became obsolete when Quantum Monte Carlo (QMC) became the de-facto

standard [13] . Nowadays various parametrizations of the QMC generated data are used, of which

we will later compare three [14, 16, 15].

This approximation has proved surprisingly successful, even applied to systems that differ from

the electron liquid considerably. One explanation for this is that the error systematically cancels

out [11], as LDA overestimates εx and underestimates εc.

LSDA - Local Spin Density Approximation

The local density approximation can easily improved upon by taking spin into account. Local spin

density approximation can be formulated either in terms of two spin densities n↑(r) and n↓(r)

ELSDA
xc [n(r)] =

∫
n(r)εxc(n

↑(r), n↓(r))dr. (25)

LSDA can be extended to non-collinear spins and is as such the most general local approximation.

For unpolarized systems it is the same as LDA, as n↑(r) = n↓(r) = n(r)/2.

GGA - Generalized Gradient Approximation

In the LDA only the knowledge of the density at a certain point is exploited. So naturally, since any

real system is not spatially homogenous, it might be useful to include the information about the

gradient of the density in the functional. This is exactly what Generalized Gradient Approximations

do.

EGGA
xc [n(r)] =

∫
f(n(r), |∇n(r)|)dr. (26)

GGAs vary wildly with the choices of functions f(n, |∇n|), and there is no consensus at the moment

on what the best function is. At the moment the most popular are PBE [17] and BLYP [18]. The

main advantage of GGAs over LDA is that they can enforce analytically determined asymptotic

properties of the functional [11, 18]. A further generalization of GGA’s are meta-GGA’s that use

the Laplacian of the density as well [11].

7Namely random phase approximation [12].
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3. Numerical implementation

3.1 LDA for atomic calculations

In the second part of this paper we will be implementing LDA for calculations of ground states of

atoms. This sort of computation is much simpler than DFT calculations for solids, where this is

often just the first step in the computation, like in the Linearized Augmented Planewave (LAPW)

Method.

The problem is usually solved in spherical coordinates. The Kohn-Sham single state wave-

functions are written as

φnlm(r) =
1

r
unl(r)Ylm(θ, φ), (27)

where Ylm(θ, φ) are normalized spherical harmonics. When working with atoms it is often convenient

treat the problem as spherically symmetric, and independent of spin [11]. We derive the potential

by a spherical average over any non-spherical terms and average all the spin states so that orbital

densities are the same for each spin state. This sort of calculation is referred to as restricted and is

often sufficiently accurate. In the case of closed shell atoms (noble gases) it is in fact exact.

Using the Laplacian in the spherical coordinates, Kohn-Sham equations (21) for the restricted

case can be reduced to radial equations for each principal quantum number n

− 1

2

d2

dr2
unl(r) +

(
l(l + 1)

2r2
+ VKS(r)− εnl

)
unl(r) = 0. (28)

The electron density then becomes

n(r) =

occuppied∑
n,l

2(2l + 1)
|unl(r)|2

r2
. (29)

Finally the expression for the total energy EKS can be simplified by making use of the eigenvalues

εnl and thus avoiding differentiation of individual orbitals for kinetic energy calculations. We see

that

εi = 〈φi|Ts + VKS|φi〉 → Ts[n] =
∑
i

εi −
∫
VKS(r)n(r)dr (30)

which we can use to rewrite the total energy functional as

E =

occuppied∑
n,l

2(2l + 1)εnl +

∫
4πr2n(r) [Vext + εh + εxc − VKS] dr, (31)

where εh(r) = 1
2

∫ n(r′)
|r−r′|dr′ is the Hartree energy density.

This sort of approach should work well for closed-shell atoms or atoms which are nearly spheri-

cally symmetric. If additional accuracy is required, one can perform the spin unrestricted calculation

which allows for spin dependence of potentials and orbitals or perform the fully unrestricted calcu-

lation. In the fully unrestricted calculation for atoms, the density n(r, θ) and exchange-correlation

potential Vxc(r, θ) are cylindrically symmetric. This can be resolved with clever expansions of the

potentials and by performing angular integrals of Vxc(r, θ) numerically [11], but is tedious to imple-

ment.

3.2 Self consistency loop

Once the explicit expression for the energy functional is known the Kohn-Sham equations can be

solved. As the Kohn-Sham functional is dependent on the density, the equations (22), (28) and (29)

Matrika 7 (2020) 1 7
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Figure 2. Schematic of the self consistency loop for the spherically restricted problem. When the loop is finished
one uses the energy eigenvalues εnl, Kohn-Sham orbitals unl and the electron density obtained to calculate various
response functions (i.e. properties) of the system.

form a system of nonlinear coupled equations. A standard approach for solving such systems is to

iterate until self-consistency between VKS(r) and n(r) is achieved. The flowchart showing such a

calculation can be seen on Figure 2. We start with an initial guess of the electron density, solve the

Kohn-Sham equations and obtain a new density and we stop when these are sufficiently “similar”.

Each step in the self consistency loop brings with it numerical considerations, which we will now

examine in more detail.

3.2.1 Initializing the electron density

Before any calculations are performed one must choose an initial electron density. In certain types of

calculations the initial density guess is very important, for example in magnetic solids [11]. However,

when it comes to atom ground state calculations the simplest way is often the best and that is to

guess that the density is similar to that of the H atom

n0(r) =
1

64π
exp(−Z

2
r), for which

∫ ∞
0

4πr2n0(r)dr = Z (32)

where Z is the number of electrons. For us this will suffice, but it is important to note that when it

comes to solving more complex problems there exist semi-empirical methods for guessing the initial

density, a popular approach used in quantum chemistry is the Extended Hückel Method [19].

3.2.2 Computing the Kohn-Sham potential

Once we have our initial density we need to calculate the Kohn-Sham potential, while this step is

done in each iteration of the calculation it is not the most computationally intensive step, as we will

8 Matrika 7 (2020) 1
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see it boils down to solving an ordinary differential equation8. The Kohn-Sham is the sum of the

external Vext[n], Hartree Vh[n] and exchange-correlation Vxc[n] potentials. Calculating Vxc[n] and

Vext[r] poses no real problem as explicit form for the external potential for nucleus with charge Z is

known,

Vext[r] = −Z
r

(33)

and explicit parametrizations of the exchange-correlation exist, these are discussed in more detail

in appendix A. As both Vext and VKS diverge when r → 0 some care needs to be taken. Usually,

the point at r = 0 is omitted from calculations and the information at the origin is approximated

using extrapolation from neighbouring points.

The Hartree potential

Vh(r) =

∫
n(r′)

|r− r′|
dr′ (34)

could be obtained by means of direct integration of the above expression. A much more common

approach is to solve the Poisson equation that we obtain from Gauss’ law

∇2Vh(r) = −4πn(r) (35)

in spherically symmetric situations one can use the substitution Uh = rVh to obtain the ODE

d2

dr2
Uh = −4πrn(r). (36)

The boundary conditions are obtained from two observations:

1. Hartree potential at r = 0 is finite → Uh(0) = 0.

2. Expansion of (34) gives Vh ∼ 1
r

∫
n(r′)dr′ → Uh(∞) = Z

In practice, a maximum radius rmax has to be chosen to make the domain finite. We assume that

electrons reside near the nucleus and as such
∫ rmax

0 n(r)dr = Z. The problem could be solved by the

shooting method, but can be simplified into an initial value problem. Because we know the solution

of the homogeneous equation d2

dr2
Uhomh = 0 → Uhomh = αr, we only need to solve an initial value

problem Uparth (0) = 0, d
drU

part
h (0) = 1 for the particular solution and fix the boundary conditions

with the homogeneous solution.

Uh(r) = Upart
h (r)− r

(
Z − Upart

h (rmax)

rmax

)
. (37)

The solution is readily obtained with a numerical integration scheme. The most straightforward

approach is to use a uniform radial grid with Numerov method. In DFT however, it is often

beneficial to use grids that are denser near the origin [11]. Because electrons are located mostly

near the nucleus this is where more accuracy is needed. A popular choice is a logarithmic grid [20],

which can be defined as

ri = −a ln(1− xMi ), xi =
2i− 1

2N
, for i = 1, . . . N (38)

where m and a are free parameters that characterize the grid. A logarithmic grid has the disad-

vantage of extending the problem from 0 ≤ r ≤ ∞ to −∞ ≤ r ≤ ∞ in practice this is dealt with a

series expansion near the origin as detailed in [21].

8In the non spherically-symmetric case the ODE becomes a partial differential equation
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Figure 3. Hartree potentital of self consistent solution of Neon, calculated using an uniform grid with 104 points and
Numerov integration, rmax = 10.

3.2.3 Solving the Kohn-Sham auxiliary system

Having obtained the Kohn-Sham potential we can now solve the auxiliary system (28). This is the

most computationally expensive step of the loop. Because we are solving for the ground state we

are tasked with calculating enough lowest energy eigenfunctions to store all of the electrons in the

systems, accounting for degeneracy of the state εnl

degeneracy(εnl) = 2(2l + 1) (39)

We know the bound states satisfy unl(0) = 0 and are generally defined for r ∈ [0,∞). To numerically

solve the problem we must restrict ourselves to a finite computational domain as we have done when

computing the KS potential. The asymptotic behaviour of unl for r → ∞ can be calculated and

used to obtain values unl(rmax) and unl(rmax−∆r), ∆r is the discretization step. In our application

we will use9

unl(r) ∼ re−Zr. (40)

What remains is a boundary value problem that we will solve using a variant of the shooting method.

We will be solving the initial value problem by integrating from rmax towards 0, this is numerically

more stable than the other way around. We will not be changing the initial slope however, since we

know it from (40). We will be changing the energy εnl, when we will use an eigenvalue the boundary

condition at r = 0 will be satisfied. We will start the search for energy eigenvalues at some lower

bound10 εmin and coarsely scan the region with step ∆ε until we find the root, then we use Brent’s

method to find the zero more accurately. This process is repeated with different values of n and

l until enough states are obtained. Four states of Argon are presented on Figure 4, note that the

orbitals are mostly localized to r < 1,

9Inspired by the solution to Hydrogen atom.
10There is no general guideline for choosing the lower bound energy. An educated guess can be made from exper-

imental data or simpler models. One such approach is to consider the energy of a single electron around a nucleus
with charge Z.
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Figure 4. Four lowest energy orbitals of Argon, and their respective energy eigenvalues.

3.2.4 Calculating the total energy

Calculating the total energy boils down to performing the integral in (31) numerically. The equation

can be rearranged slightly to obtain

E =

occuppied∑
n,l

2(2l + 1)εnl +

∫ rmax

o
4πr2n(r)

[
−1

2

Uh(r)

r
+ (εnl − Vxc)

]
dr, (41)

The integrals are evaluated with standard numerical integration schemes without any issues. Once

the ground state energies from two subsequent iterations are close enough the loop is terminated.

3.2.5 Mixing

In principle one can update either the potential VKS or the density n(r) each iteration, but the

density is a clear choice, it is uniquely defined as opposed to the potential. We are left with the

task of obtaining a new electron density nin
i+1 from the previous densities nin

i and nout
i . The simplest

approach is to simply use the output density of the previous iteration

nin
i+1 = nout

i , (42)

this can cause large charge oscillations and is not used often in practical calculations [23]. Linear

mixing is a more prevalent approach

nin
i+1 = αnout

i + (1− α)nin
i . (43)
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It can be seen as crude version of the steepest descent for minimizing the energy and is the best

choice in the absence of other information [11]. The choice of α greatly influences the convergence

towards self-consistency. As a general rule, for “small enough” values of α the procedure is relatively

safe, but the convergence is slow. The problem of choosing α has been studied in depth [25], but is

beyond the scope of this article. In our calculations we will be using α = 0.3.

Another popular approach is using Broyden’s method [24], which approximates the Jacobian

inverse J−1 from past iterations and changes the density in an iteration in a direction orthogonal

to all previous directions11. Consider the function

F[nin] = nout, (44)

self-consistency will be achieved when

F[nin] = nin. (45)

As such the problem of achieving self consistency can be reformulated as minimizing the norm of

the residual R

R[n] = F[n]− n. (46)

Defining the Jacobian J as

J =
δR

δn
(47)

one can then use the Newton-Ralphson method to minimize the residual by iterating

nin
i+1 = nin

i + J−1(nout
i − nin

i ). (48)

Broyden found a way to effectively calculate the Jacobian and thus the method bears his name.

The main advantages of this approach are speed and stability, one of the downsides is that one has

to store the inverse of the Jacobian matrix, but this too can be avoided [24]. For implementation

details see appendix of [11]. For the purposes of our implementation linear mixing will suffice.

4. Results

4.1 Closed shell atoms

The radial Schrödinger equation (28) is exact for closed-shell atoms, thus we expect good estimates

of the ground state energy. Ground state electron densities for the first four noble gases are shown

in Figure 5. When compared to experimantal values from [22], the errors range from around 2.5%

for Helium to 0.6% for Argon.

4.2 Non spherically symmetric atoms

The radial Schrödinger equation (28) assumes spherical symmetry, but can be used for atoms that

do not have a full outer shell. This is often done in practice due to ease of implementation and

computational complexity. Nevertheless LDA in this form proves reasonably successful for atoms

with open outer shells, as can be seen on Figure 6a.

11This is a general characteristic of Krylov subspace methods.
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Figure 5. Radial electron density of the first four noble gases. The Kohn-Sham wave functions unl are named using
standard subshell notation (s → p → d → f . . . ) and are scaled according to their degeneracy i.e. the density of
each state contains all electrons in that subshell. The calculations were performed using N = 104 points, rmax = 10 ,
Numerov integration on a regular grid and Vosko-Wilk-Nusair parametrization of the correlation potential [14].

(a) Relative error of the ground state energies calcu-
lated with LDA

(b) Ionisation energies

Figure 6. A comparison of the LDA approximation (rmax = 10,∆r = 0.001) for atoms with experimental values.
Experimental data obtained from [22]

While the eigenvalues εnl generally have no physical meaning, the eigen energy of the highest

occupied Kohn-Sham orbital approximates the first (vertical) ionisation energy. This is stated by

DFT-Koopmans’ theorem, which is DFT’s counterpart of the theorem that was originally formulated

for closed-shell Hartree-Fock theory. Ionisation energy approximation can be seen on figure 6b. From

the ionisation energies we observe another interesting characteristic of the spherically averaged

calculation. Since atomic orbitals in s-shells are spherical no information is lost when spherical

averaging. Hence our calculation correctly describes the decreases in ionisation energy from Be→B
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and Mg→Al. That is not the case with p-shells and that is why we do not obtain the decreases in

ionisation energies from N→O and P→S.

4.3 Different Correlation functional parametrisations

As mentioned in 2.3there exist many parametrisations of the correlation functional. In our calculation

we used one of the simplest variants, the spin restricted version of the Vosko-Wilk-Nusair. Table 1

shows a comparison between our calculation, two of its simplest improvements, the spin unrestricted

calculation and the calculation corrected for self-interaction of orbitals SIC-LSDA by Perdew and

Zunger [15].

Atomic ground state energies [eV]

Atom ELDA ELSDA ESIC−LSDA Experiment

H -12.1 -13.0 -13.6 -13.6
He -77.1 -77.1 -79.4 -79.0
Li -199.6 -202.2 -199.8 -204.2
Be -393.1 -393.0 -399.8 -399.1
B -662.4 -662.5 -672.0 -670.8
N -1470.1 -1472.7 -1488.9 -1485.3
F -2626.5 -2696.6 -2720.7 -2713.5
Ne -3489.4 -3488.9 -3517.6 -3508.1
Na -4393.0 -4392.6 -4426.1 -4414.7
Mg -5418.8 -5418.3 -5456.4 -5443.21
Al -6566.5 -6566.0 -6608.8 -6594.0
P -9250.4 -9251.1 -9303.7 -9285.1
Ar -14311.7 -14310.5 -14378.3 -14354.6

Table 1. A comparison of ground state energy calculations with different methods. Our spin restricted calculation
ELDA is compared to a spin unrestricted approach ELSDA as originally described in [14] and a self-interaction corrected
functional ESIC−LSDA. Data obtained from [15] .

As seen when accounting for self-interaction of orbitals one obtains much more accurate estimates

of the ground state energies. But perhaps the most glaring improvement is in the estimates of

ionisation energies. As seen in 6b the local density approximation systematically underestimates

the ionisation energies by around 40%.

Ionisation energies [eV]

Atom −εLDA −εLSDA −εSIC−LSDA I1

H 6.4 7.3 13.6 13.6
He 15.5 15.5 25.8 24.6
Li 0.92 3.2 5.4 5.4
N 7.2 8.3 14.9 14.5
Na 2.7 3.1 5.1 5.1
P 5.6 6.3 10.0 10.5
Ar 10.4 10.4 15.8 15.8

Table 2. A comparison of first ionisation energy calculations with different methods. Data obtained from [15].

As can be seen in tables 1 and 2, the local density approximation provides good approximations

of the ground state energies, but fails to do so for the first ionisation energies. The reason is the
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self-interaction error of an electron with itself in the exchange term. Accounting for self-interaction

gives much better results, as can be seen in the εSIC−LSDA column of table 2.

5. Conclusion

In the article, we discussed one of the most influential methods in computational quantum chem-

istry, density functional theory. We briefly presented the theoretical underpinnings of the method,

the Hohenberg-Kohn theorems, and the Kohn-Sham ansatz. We focused on the numerical intrica-

cies of the problem and the different ways one can approximate the Kohn-Sham functional. We

implemented a simple variant of DFT, the local density approximation and used it to calculate the

ground-state energies and ionization energies of different atoms. Furthermore, we compared the

results to both experimentally obtained data and data obtained with improved numerical methods

and showed that LDA is reasonably effective at obtaining ground state energies of atoms.

This article just barely scratches the surface when it comes to DFT, we have omitted the discussion

on how to effectively design new functionals with desired properties or how to use DFT for excited

states, molecules and solids. Neither have we mentioned extensions of DFT that allow studying

dynamics of many-body systems. Nevertheless, LDA is a good starting point, and is sometimes

even one of the steps in larger DFT computations. Moreover, it is relatively simple to implement,

as opposed to its extensions. All of the computer code used to generate both the results and plots

in this paper is available online.
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A Vosko-Wilk-Nusair parametrization of the correlation potential

As mentioned various parametrizations of the correlation functional exist. In the Vosko-Wilk-Nusair

parametrization the correlation functional is expressed as

εc(x) =
A

2

[
log

(
x2

X(x)

)
+

2b

Q
arctan

(
Q

2x+ b

)
−

− bx0

X(x0)

{
log

(
(x− x0)2

X(x)

)
− 2b+ 4x0

Q
arctan

(
Q

2x+ b

)}]
(49)

where x(n) =

√(
3

4πn

) 1
3 , X(x) = x2 + bx+ c, Q =

√
4c− b2 and the parameters are A = 0.0621814,

x0 = −0.10498, b = 3.72744 and c = 12.9352. The potential is expressed as

Vc(x) = εc −
A

6

c(x− x0)− bx0x

X(x)(x− x0)
. (50)
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