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QUANTUM MACHINE LEARNING
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Advances in processing power and algorithms have made machine learning a very potent tool. This article attempts
to introduce machine learning and present two applications of machine learning in quantum physics. The first example
deals with the ground state energy of an electron in 2D potential, while the second one touches upon the applicability
of machine learning to the quantum many-body problems. The article concludes with a brief description of potential
machine learning speed-ups promised by quantum computers.

KVANTNO STROJNO UČENJE

Zaradi napredkov v algoritmih in procesorski moči je postalo strojno učenje zelo močno orodje. Članek se začne s
kratko predstavitvijo strojnega učenja, nato predstavi dva primera uporabe strojnega učenja v kvantni fiziki in zaključi
z opisom potencialnih pohitritev, ki jih strojnemu učenju obljubljajo kvantni računalniki. Prvi primer obravnana
metodo za določanje osnovnega stanje elektrona v 2D potencialu, drugi pa predstavi uporabo strojnega učenja pri
opisu kvantnih mnogodelčnih sistemov.

1. Introduction

Pattern recognition and strategy optimisation is something that comes naturally to humans, but we

quickly reach the limits of our processing power as the quantity and complexity of data increases.

Machine learning algorithms are useful for discovering patterns in data that might not be apparent

at first. They are designed to ’learn’, that is to adjust their parameters, in one form or another,

to the known training data set and construct a model that can subsequently be used on unknown

data.

Algorithms capable of learning to execute tasks they were not explicitly programmed for are

not a new idea. The first articles about neural nets appeared as early as 1958 [1], but they were

limited by the technology of their day, as the implementation tends to be computationally complex.

Improvements in processing power and data storage have led to the relatively recent explosion of

machine learning applications ranging from image recognition to risk assessment and beyond.

Machine learning and quantum physics have a sort of symbiotic relationship. Quantum compu-

ters (and algorithms) can be used to speed up the computationally complex learning process [2],

while machine learning allows for a different insight into quantum systems that tend to be large and

unintuitive.

The first part of the article will provide a brief introduction to machine learning, followed by

the main part presenting two examples of machine learning applied to quantum physics and a brief

outline of potential speed-ups with quantum algorithms at the end.

2. Machine Learning

There are many different machine learning algorithms and it is important to choose the right one

for the task at hand, as there are multiple trade-offs. Complex algorithms provide better accuracy,

but it is much harder, if not impossible, to interpret the reasoning behind their results, which can

be detrimental when conducting research or correcting errors. Over-fitting and under-fitting data

should be avoided by using algorithms with the appropriate number of parameters for the training

data that is available [3].
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Algorithm selection is also influenced by the available type of data. Supervised learning (used in

3.1) works with labelled data1 to infer a model that maps between the input and the desired output.

Unsupervised learning groups and finds structure in unlabelled data. Reinforcement learning (used

in 3.2) uses some sort of cost function to improve over time based on the previous results.

3. Simulating the quantum phenomenon with machine learning

Applying machine learning algorithms to quantum physics is an interesting and relatively new field.

Quantum problems are suitable for machine learning as there are large quantities of data with

non-trivial correlations, especially in many-body problems where the dimension of the vector space

increases exponentially with the number of particles. This section will deal with two examples from

the literature that represent the various problems that can be tackled through machine learning.

3.1 Neural networks and the single particle Schrödinger equation

Slika 1. Heat-map visualization of the four di-
fferent classes of potentials V (x, y) with three
representative examples for each one. Brigh-
ter colour represents lower values. Reproduced
from [4]

This section will review the work in the article [4] related

to the calculation of the ground-state energy of an electron

in a 2D potential. Ground-state energy is a well-known

problem with analytical solutions2 which can serve as a

convenient test case for machine learning algorithms.

Authors used four classes of potentials displayed in fi-

gure 1: simple harmonic oscillators (SHO), infinite wells

(IW), double-well inverted Gaussians (DIG) and random

potentials (RND). The first two are relatively simple, only

dependent on 2 parameters, and analytically solvable,

while the complexity of the latter two escalates and poses

a real challenge.

Solving electronic structure problems is important in

a large number of disciplines and it would prove beneficial

to develop an algorithm that could provide efficient3 so-

lutions, especially as we increase the number of particles

which causes the computational complexity of traditional

algorithms to increase polynomially.

The aim of machine learning considered here is con-

structing a model that provides an efficient mapping be-

tween the electrostatic potential and the corresponding

ground-state energy, effectively bypassing the step of sol-

ving the Schrödinger equation HΨ = εΨ. Each potential

is represented as a 256×256 matrix of floating point numbers that can be visualized as a heat-map.

3.1.1 Machine learning method selection

The authors have attempted a featureless4 approach where a machine learning algorithm is provided

the same data as a numerical method and is left to learn both the relevant attributes of the system

and the mapping required to provide the relevant solution. Such an approach promises easier

1Prepared dataset that contains both the algorithm input and the corresponding desired output.
2For certain classes of potentials (eg. simple harmonic potential).
3Fixed initial training cost can be ignored in this context.
4An approach where the data/model is not specifically adapted to expose attributes specific to the problem.
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scalability for larger and more complex systems, that are the motivation for faster methods, but

require deep learning methods.

The first step towards a solution is choosing the correct method. Several machine learning

algorithms5 were compared based on the real time of training, execution, and errors at predicting

ground-state energies for SHO and random potentials. While other algorithms provided comparable

or better results at SHO, the deep neural network proved to be far superior at random potentials

while also being the fastest (with a caveat of dissimilar code optimization).

The schematic version of the chosen deep neural network algorithm is displayed in figure 2.

A convolutional neural network consists of subsequent ’reducing’ and ’non-reducing’ convolutional

layers. In this case, there are 7 reducing layers, each reducing the image resolution by a factor

of 2 and 2 non-reducing layers (12 in total) between each reducing layer, serving to add trainable

parameters to the network. The final convolutional layer feeds into a fully connected layer that is

subsequently used to calculate the result.

Convolutional layers work by sliding (convolving) a filter6 over the input matrix to calculate

the output, effectively combining neighbouring values based on the filter values. A layer consists

of multiple filters with values that serve as trainable parameters. In this example, the reducing

layers use 64 3× 3 filters with a stride of 2× 2, thus reducing the resolution by a factor of 2, while

the non-reducing layers work with 16 4 × 4 filters and a unit stride that conserves the resolution.

The output of a convolutional layer is a stack of Dl matrices where Dl is the number of filters in

the layer. To avoid the exponential growth of resulting stacks in latter layers filters operate on the

entire depth of the previous result as n× n×Dl−1 tensors.

A fully connected layer connects every value in the first layer with every value in the second

layer. In this example, it is used to provide a set of learnable coefficients between the flattened

result of the convolutional layers and the final ground-state energy.
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Slika 2. Visualization of the deep neural network used to bypass the numerical calculation of Schrödinger equation.
The lower part of the image displays a schematic representation of ’reducing’ and ’non-reducing’ convolutional layers.
Adapted from [4].

5Kernel ridge regression, random forests and deep neural networks.
6Usually a much smaller matrix than the input.
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3.1.2 Machine learning training and results

Slika 3. Model error compared to the training data in relation to the
number of iterations through the data set. Inlay shows the impact of
non-reducing layers on error and training time. Reproduced from [4].

A deep neural net was trained using

supervised learning with potentials

and corresponding labels (ground-

state energies), that were calcula-

ted with a standard finite-difference

method for the eigenvalue problem

Hψ = εψ. Neural nets were trained

with 200000 randomly generated po-

tentials of a specific class and corre-

sponding ground-state energies.

Figure 3 displays the relation be-

tween the training length expressed in

epochs and the training loss. The loss

is defined as the absolute error of the

neural net calculated result relative to

the label value. Epoch is defined as

one complete iteration7 through the training dataset, in this case, that means 200000 potential-

energy pairs.

Inlay in figure 3 displays the impact of non-reducing layers and consequently the number of

trainable parameters. Choosing the appropriate number of layers is vital as it has a strong correlation

with the training duration and prevents over/under-fitting.

The training was stopped after 1000 epochs as the loss no longer decreased significantly. Loss can

be used to estimate the appropriate stopping point, but the model still needs to be cross-validated

on independent data to determine the actual accuracy of prediction.

Trained models were evaluated on 50000 test potentials of the same class they were trained on,

but not used during the training process. Results are displayed in figure 4 and table 1. Surprisingly,

the infinite well potentials fared the worst, despite only being analytically dependent on two para-

meters, which is most likely due to the sharp discontinuity in their potential. The authors noted

that the random potential model has not fully converged yet and provided another 200000 example

1000 epoch training, which significantly improved the median absolute error to 1.49 mHa8. Figure

4(d) is displaying the histogram for the further-trained model.
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Slika 4. Histograms of true and predicted values for the different potentials. The models were evaluated on the
same class of potential they were trained on, with the exception of panel e. Insets display the distribution of error.
Reproduced from [4].

7One iteration step consists of the neural net evaluating a potential and modification of the neural net coefficients
according to the loss.

8The Hartree [Ha] is a unit of energy commonly used in atomic physics and computational chemistry. 1 Ha ∼ 27.2
eV.
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Potential MAE [mHa]

SHO 1.51
IW 5.04
DIG 2.70
RND 2.13

equal mixture 5.90
DIG with RND model 2.94

Tabela 1. Median absolute error (MAE) values for deep
neural network evaluated on test data. Values from [4].

This well trained model for the RND poten-

tial shows promise for general use9, as shown in

figure 4(e), with MAE of only 2.94 mHa when

solving DIG potentials with model trained on

RND potentials, which is comparable with the

MAE result of 2.70 mHa for the model that was

trained on the same class of potentials.

Both test evaluations of the model trained

on random potential data show the model failing

at high energies, which is a result of not being

exposed to many high energy examples during

training.

Overall the convolutional neural networks show promise in transferability and efficient solutions

for electronic structure problems, with further work required to achieve scaling to variable input

sizes and rotational invariance.

3.2 Restricted Boltzmann machine and the quantum many-body problem

…

…
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Slika 5. Restricted Boltzmann machine, a type of artifi-
cial neural network with N visible and M hidden variables.
Reproduced from [5].

This section will review the work in the article

[5] related to the application of machine learning

on a quantum many-body problem. Machine

learning is used in the effort to condense the

information from the full wave function to its

most essential features.

Authors chose a relatively simple neural net

called a restricted Boltzmann machine (RBM),

that is schematically presented in figure 5. RBM

is an energy-based model with one layer of vi-

sible and one layer of hidden variables. This

model is considered restricted because there is

no intra-layer variable interaction which greatly

simplifies the training process.

Basic idea is to interpret the wave function∑
S Ψ(S) |S〉 with Ψ(S) treated as a black box

that returns a phase and an amplitude (a complex number) based on the input S = (S1,S2, ...,SN ).

Neural-network quantum states (NQS) method aims to replicate this black box with an artificial

neural network specified by a set of internal variables W.

The visible layer od RBMs dealing with spin 1/2 quantum systems is represented by N nodes

corresponding to the physical spin variables (eg. S = (σz1 , ..., σ
z
N ) where σzi ∈ {−1, 1}) and a hidden

layer of M auxiliary spin variables (h1, ..., hm) where hi ∈ {−1, 1}. This description corresponds[6]

to a variational expression for coefficients of quantum states

ΨM (S;W) =
∑
{hi}

e
∑

j ajσ
z
j+

∑
1 bbhi+

∑
ij Wijhiσ

z
j ,

where the weights W = {ai, bj ,Wij} fully specify the neural network’s response to an input state S.

Hidden variables can be explicitly traced out, as there are no intra-layer interactions, and the

9Use outside of the exact potential class it was trained on.
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wave function can be stated as

ΨM (S;W) = e
∑

i aiσ
z
i ×

M∏
i=1

Fi(S), where Fi(S) = 2 cosh

bi +
∑
j

Wijσ
z
j

.
The parameter M plays a role similar to the bond dimension in matrix product states (MPS)

method, with an increased number of hidden variables leading to better accuracy at the expense of

longer training time. It is useful to express the number of hidden and visible variables as a density

α = M/N .

3.2.1 Ground state

Neural network representation of the ground state for a given Hamiltonian H is optimised with

reinforcement learning realised through the minimization of expected energy

E(W) =
〈ΨM |H |ΨM 〉
〈ΨM |ΨM 〉

with respect to the weights W. Minimization is achieved through iterative Monte Carlo sampling

with a stochastic estimate of energy gradient and |ΨM (H,Wk)|2 calculated at each iteration k.

Improved weight estimation Wk+1 is then calculated with a gradient-descent method.

Results of iteration for one of the examples are displayed in figure 6, where it appears that there

is no correlation between α and convergence point.

101 102 103

# iteration

−0.5

−0.4

−0.3

−0.2

E
/N

α = 1

α = 2

α = 4

Exact

250 500 750 1000
# iteration

−0.00008
−0.00007
−0.00006
−0.00005
−0.00004
−0.00003
−0.00002

−4.436×10−1

−0.44368

−0.44362

−0.44364

−0.44366

Slika 6. Convergence of energy through iterations of learning algorithm for 1D Heisenberg model with N = 40 and
periodic boundary conditions. Multiple hidden variable densities α are tested with the right panel displaying a zoom
view of convergence. Reproduced from [5].

The method is validated on the transverse-field Ising (TFI) and the antiferromagnetic Heisenberg

(AFH) models with periodic boundary conditions in 1D and AFH in 2D on a 10× 10 lattice.

HTFI = −h
∑
i

σzi −
∑
〈i,j〉

σzi σ
z
j HAFH =

∑
〈i,j〉

σxi σ
x
j + σyi σ

y
j + σzi σ

z
j

where i and j sum over the spins with 〈i, j〉 representing all valid neighbour combinations.

Accuracy of NQS is displayed in figure 7. The left panel displays accuracy for the 1D TFI, where

even a modest density of hidden variables achieves a remarkable accuracy (even for the critical point

h = 1) and seems to show power law behaviour in α. The middle panel shows that a similar accuracy
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is also replicated on the more complex 1D AFH model10. The right panel shows accuracy for the 2D

AFH model where the increased dimension noticeably affected the rate of convergence. The NQS

method shows improvement as the hidden variable density α increases, eventually beating other

state-of-the-art methods.
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Slika 7. Results for the ground state problem displaying relative error compared to the exact result in relation to the
density of hidden variables. The left panel displays the 1D TFI, the middle panel the 1D AFH and the right panel
the 2D AFH. Reproduced from [5].

3.2.2 Unitary dynamics

A similar approach is also possible for the time dependent problem i ddtΨ = HΨ. The time dynamic

is introduced through the time dependent weightsW(t). Weights are determined by minimizing the

residual

R(t, Ẇ(t)) = dist(δtΨ(W(t)),−iHΨ(W (t)))

with respect to the time derivative of weights Ẇ(t) using the time variational Monte Carlo method.

W(t) constructed through the numerical integration of optimised Ẇ(t) is then used to express the

time dependant coefficients ΨM (S;W(t)).

Dynamics are induced by the instantaneous change of transverse field h for the TFI model

and the change of longitudinal coupling Jz for the AFH model as indicated by the labels in the

figure. Results are displayed in figure 8 with the TFI on the left and the AFH on the right. High

accuracy obtained in these time-dependent solutions shows promise for the NQS method not only

as a ground-state method but also for the evolution of complex states.

4. Quantum speed-ups for classical algorithms

Quantum computers offer substantial improvements to operations that are common in machine lear-

ning algorithms. Databases can be searched with time complexity of O(
√
N) which is quadratically

faster compared to classical computers, that do it in O(N). Fourier transforms over N points,

inverting sparse11 N×N matrices and finding their eigenvalues is possible in O(poly(logN)), which

is an exponential speed-up compared to O(N logN)12 achieved by the best classical algorithms [7].

Many quantum algorithms rely on the existence of a quantum random access memory[8] (QRAM)

as a black box algorithm capable of accessing N pieces of data in O(log2N) and encoded in log2N

qubits.

10As an interesting note this NQS representation with α = 4 provides a similar accuracy as the DMRG algorithm
with the bond dimension of 140.

11Some algorithms only require low-rank matrices.
12Finding eigenvalues of a tridiagonal matrix.
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Slika 8. Results for the time dependant NQS (full line) compared to the numerically accurate methods (dashed line).
Left panel shows results for the TFI model after a quench in the transverse field h. The right panel shows results for
the AFH model after a quench in the coupling constant Jz. Reproduced from [5].

Improvements for some common algorithms are summarised in table 2 but it is important to

note some caveats about their applicability. Quantum algorithms themselves are fast but there

are issues with input and output operations remaining relatively slow and dominating the cost of

quantum algorithms when dealing with classical data. Time complexity analysis is useful for the

asymptotic behaviour of large systems but it is unclear what the actual computation speed on

quantum computers might be and what the crossover point13 is. Neither quantum computers nor

QRAM have truly advanced beyond proof of concept stage and still need a lot of work before such

benchmarks could be available.

Method Speedup QRAM dependency

Online perceptron [9] O(
√
N) Optional

Least squares fitting [10] O(logN) Yes

Classical Boltzmann machine [11] O(
√
N) Optional

Quantum principal component analysis [12] O(logN) Optional
Quantum support vector machine [13] O(logN) Yes

Tabela 2. Time complexity improvements of some quantum algorithms compared to their classical versions.

5. Conclusion

Quantum mechanics provides ample opportunity to either improve on and speed up machine learning

algorithms or use them to ease calculations and discover new concepts. As shown in section 3.1, there

is ample opportunity for machine learning to speed up computation for repetitive or complex multi-

particle electronic structure problems in physics, chemistry and material science. Machine learning

can also improve on stochastic methods like Monte Carlo and helps in finding more efficient wave

function representation allowing for larger systems and better accuracy, as shown in section 3.2.

Machine learning is a very active field and it is important for physicists to keep up, find appli-

cations and help improve algorithms which will certainly further our understanding of nature.

13Size of data where the algorithmic efficiency overcomes the difference in operation speed.
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