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The article presents Majorana modes in condensed matter physics. The Kitaev chain model with a p−wave
superconductor pairing is approached and Majorana operators are introduced. Step by step topological protection,
non-abelian statistics and braiding, key ingredients for topological quantum computation, are presented. The theoretical
Kitaev model is modified to a realistic spinful fermion nanowire model with s−wave superconductor induced pairing
and spin-orbit coupling. Lastly, experimental evidence is presented.

MAJORANA FERMIONI

V članku so predstavljeni Majorana fermioni v fiziki kondenzirane snovi. Predstavljen je Kitaev model verige s
p−superprevodno sklopitvijo, temu pa sledi definicija Majorana operatorjev. V nadaljevanju so opisani: topološka
zaščitenost stanj, neabelska statistika in pletenje (ang. “braiding”), ki so ključni sestavni deli topološkega kvantnega
računalnǐstva. Teoretični Kitaev model je nato preoblikovan do realističnega modela, ki upošteva spin fermionov,
s−superprevodno sklopitev in spin-orbit interakcijo, nazadnje pa je predstavljen tudi eksperimentalni dokaz Majorana
stanj.

1. Introduction

In 1937 Ettore Majorana suggested that electrically neutral particles, such as neutrons and neutrinos,

could be, in the context of quantum field theory, represented by a single real field. While neutrons

and antineutrons are distinct particles, it remains unknown whether or not neutrinos are Majorana

particles and it is to be seen if Majorana fermions exist in nature as elementary particles. [1]

However, in condensed matter physics Majorana fermions could be realised as quasiparticles,

excitations in solids, with interesting properties applicable in future quantum computation hardware.

In the article the Kitaev chain is introduced and topology in superconductors is briefly mentioned.

Secondly, braiding inside a one-dimensional system and non-abelian statistics are presented, and

lastly, a detection of Majorana fermions in condensed matter is discussed.

2. The Kitaev chain model

We start with a simple Hamiltonian, proposed by A. Kitaev [2], describing a finite 1D tight-binding

chain model of length N with superconducting p−wave pairing consisting of chemical potential, a

hopping term and a superconducting term:

H = −µ
N∑
i=1

c†ici − t
N−1∑
i=1

(
c†i+1ci + h.c.

)
+ ∆

N−1∑
i=1

(cici+1 + h.c.) , (1)

where µ is the chemical potential, t is the hopping parameter, ∆ is the superconducting gap of

a p-wave superconductor and as usual ci, c
†
i are the fermion annihilation and creation operators,

which obey the following anti-commutation relations: {ci, c†j} = δi,j and {ci, cj} = {c†i , c
†
j} = 0.

2.1 Majorana operators

Let us introduce Majorana operators and rewrite equation (1). Majorana operators γ2i−1 and γ2i
acting on site i are defined as the decomposition of ci and c†i to their complex components:

ci =
1

2
(γ2i−1 + iγ2i) , (2)

c†i =
1

2
(γ2i−1 − iγ2i) . (3)
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We invert equations (2) and (3) and express γ2i−1 and γ2i:

γ2i−1 = c†i + ci, (4)

γ2i = i
(
c†i − ci

)
. (5)

From the last two equations it can be directly seen that γi are indeed Majorana operators as they

are clearly hermitian γi = γ†i . Majorana operators satisfy the anti-commutation relation:

{γi, γj} = 2δi,j . (6)

Now we are ready to rewrite the Hamiltonian (1) in terms of Majorana operators:

H = − i
2

N∑
i=1

µγ2i−1γ2i +
i

2

N−1∑
i=1

((t+ ∆) γ2iγ2i+1 + (−t+ ∆) γ2i−1γ2i+2) . (7)

Consider two possible choices of parameters µ, t and ∆:

µ < 0, t = ∆ = 0 : H = −iµ
2

N∑
i=1

γ2i−1γ2i, and (8)

µ = 0, t = ∆ > 0 : H = it
N−1∑
i=1

γ2iγ2i+1. (9)

These two fully dimerized cases correspond to two distinct topological phases, where the first one

is called trivial, and the second is non-trivial or topological (see sect. 2.2). This distinction comes

from the fact that Majorana operators are coupled on the same site i (eq. 8), or neighbouring sites

i and i+ 1 (eq. 9). The difference is pictorially presented in figure 1.

Figure 1. Two fully dimerized cases are shown corresponding to eqs. (8) (upper) and (9) (lower). The topological
phase (lower) hosts on each edge an uncoupled Majorana operator. Adapted from [3].

An interesting property arises from eq. (9): the Hamiltonian does not include γ1 and γ2N
operators, therefore [H, γ1] = 0 and [H, γ2N ] = 0 commutation relations hold. Those two edge

operators correspond to zero energy eigenstates, Majorana zero modes (MZMs). MZMs can only

exist in pairs as they are “halves” of a fermion operator (eqs. 2 and 3).

For further investigation it is useful to calculate the bulk spectrum (here we consider the periodic

boundary conditions, so no edge modes are presented), which is obtained from transformation to

the momentum space. Without derivation we write the Bogoliubov-de Gennes Hamiltonian HBdG

in momentum space [4], which can be reduced to 2 × 2 matrix blocks H(k), where k is a crystal

momentum in the first Brillouin zone:

HBdG =
∑
k

H(k)c†kck, (10)

H(k) = (−2t cos(k)− µ) τz + 2∆ sin(k)τy, (11)

where τi are the Pauli matrices acting in a particle-hole Nambu space. [5] From eq. (11) we derive

the band structure of the Kitaev chain model:

E(k) = ±
√

(2t cos(k) + µ)2 + 4∆2 sin2(k). (12)
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2.2 Topological protection of edge Majorana modes

In mathematics, topology is a discipline which analyses properties of manifolds that are preserved

under continuous deformations, such as genus (number of “holes”) of a sphere and a torus. In

physics, the concept is used for characterising topological invariants of a physical system, such as

winding number (1D topological insulators), Chern number (2D), etc. [3]

Our choice of parameters in eq. (9) led us to spatially separated MZMs, but the spatial separation

of MZMs does not vanish with slight changes of parameters µ, t and ∆ as long as the energy band

gap (of bulk spectrum) is open, that is for |µ| < 2t (eq. 12), and there is no topological phase

transition.1 [4] This connection between bulk spectrum and edge modes is known as bulk boundary

correspondence. In other words, MZMs are topologically protected against local perturbations that

do not close the energy gap. This statement could be understood physically: in fact the Hamiltonian

(10) obeys particle-hole symmetry, so the energy spectrum is symmetric around zero energy. The

zero energy edge mode cannot be lifted from zero energy, unless we couple it with another edge

mode. To couple two MZMs we have to introduce a large enough interaction between them and by

doing so destroy topologically protected states. This is only possible if we first close the band gap.

3. Braiding and quantum computation

Until now, we have discussed one topological phase at a time. MZMs can also be observed at

the joints of topologically different phases, known as domain walls, presented in figure 2. By

continuously tweaking parameters, e.g. by applying external voltage, we can move these domain

walls and consequently MZMs around.

Figure 2. Fully dimerized Kitaev chain with 3 domains. Domain walls (yellow shading) host zero energy eigenstates,
MZMs. These can be localised on a single site (m = 3), or on superposition of sites (shared between m = 6 and
m = 7). Copied from [3].

If positions of two bosons are exchanged, nothing happens: |ψ1ψ2〉 = |ψ2ψ1〉, wave function is

symmetric and there is no phase shift. Contrarily, a wave function of two fermions is antisymmetric

under exchange: |ψ1ψ2〉 = −|ψ2ψ1〉. These two examples are special cases of abelian statistics. In

the case of two quasiparticles, abelian statistics could also be |ψ1ψ2〉 = eiθ|ψ2ψ1〉, so they could

be something in between bosons and fermions.2 But what happens if we exchange two Majorana

modes? It actually turns out that Majorana modes do not obey the previous description of abelian

statistics and are a part of a different class of statistics, the non-abelian statistics.

3.1 Non-abelian statistics

The key ingredient for non-abelian statistics is the ground state degeneracy. In our case that is the

degeneracy of many MZMs, which can be “occupied”. But can we actually speak of occupancy in a

Majorana mode? We can try with analogy of occupation number for fermions ni = c†ici, but with

Majorana operators being hermitian γi = γ†i and from equation (6) we deduce γ†i γi = γiγ
†
i = 1.

Thus, in some sense, Majorana modes are always filled and empty at the same time, so that kind

of counting does not give any valuable result. We return to fermionic operators, their definition of

1Those familiar with topology in condensed matter will recognize that in the vicinity of |µ| = 2t the winding
number of band changes from 1 to 0 and the energy gap closes.

2These quasiparticles are called anyons which are only possible in two-dimensional systems.
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occupation number ni = c†ici and corresponding basis |s1, s2, ...sN 〉, where si represents occupation

number at the site i. It is useful to introduce the fermion parity operator

Pi = 1− 2c†ici = −iγ2i−1γ2i (13)

for the pair of Majoranas, which together describe one fermion state (fig. 3).

From now on we will consider a network of MZMs (γn) with many T−junctions in between

them, as shown in figure 3. We assume that at any time MZMs are localised and far apart. MZMs

are distinguishable only by their position and we will concentrate on that.

Figure 3. Two Majorana zero modes could be brought
together to represent a single fermionic state with its
occupancy number. Copied from [4].

Imagine now an operation of exchanging two neighbouring MZMs γn and γm by performing a

time evolution represented by the trajectory shown in figure 4. The trajectory can be described by

a time dependant Hamiltonian H(t), 0 < t ≤ T . The time period T should be large enough, so the

system does not leave the ground state and the Hamiltonian obeys the adiabatic theorem.

Figure 4. Exchange of two MZMs in the T−junction
network. The operation is called braiding as timelines
of two MZMs form a braid in the space-time diagram.
Copied from [4].

We want to derive a unitary operator U that describes such an exchange of two MZMs. It is

reasonable that U is a function of only exchanged Majorana operators γn and γm, more precisely it

is a function of their product iγnγm, which preserves parity of fermions (eq. 13). The exponential of

the imaginary unit i times hermitian operator iγnγm is unitary and considering final configuration

of MZMs at time T we conclude that the appropriate operator is:

Unm = exp
(
±π

4
γnγm

)
=

1√
2

(1± γnγm) , (14)

where the identity (γnγm)2 = −1 was used, + and− signs correspond to clockwise and anti-clockwise

(in fig. 4) exchanges of MZMs. Unitary operator Unm is usually called braiding operator because

in space-time diagram timelines of Majorana modes form entangled strands – a braid. We get an
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important result: in the Heisenberg picture, for a clockwise exchange, this operator’s action on γn
and γm is

γn → −γm, (15)

γm → +γn.

The consequence of exchange (15) is quite remarkable. To get some insight we consider the

simplest non-trivial case that is an example with two fermions or equivalently with four Majorana

modes. The basis is |00〉, |11〉, |01〉, |10〉, where the first digit is the occupation number of the

fermionic mode c†1 = 1
2 (γ1 − iγ2) and the second digit the occupation number of c†2 = 1

2 (γ3 − iγ4).
An arbitrary wave function can be then described by a vector of amplitudes: |Ψ〉 = (s00, s11, s01, s10)

T

and braiding operators Unm can be then represented as 4 × 4 matrices. After a short calculation

using identities (6) and (13) we get matrix elements for U12, U23 and U34:

U12 = exp(
π

4
γ1γ2) =


eiπ/4 0 0 0

0 e−iπ/4 0 0

0 0 eiπ/4 0

0 0 0 e−iπ/4

 , (16)

U23 = exp(
π

4
γ2γ3) =

1√
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

 , (17)

U34 = exp(
π

4
γ3γ4) =


eiπ/4 0 0 0

0 e−iπ/4 0 0

0 0 eiπ/4 0

0 0 0 e−iπ/4

 . (18)

Now we can clearly see where the non-abelian statistics arises: if our initial state is |11〉 and we

exchange MZMs γ2 and γ3, that is U23|11〉 = 1√
2

(|11〉+ i|00〉), we end up in a different state, which

is not related to the original one by just a phase shift. Also braiding operators do not commute, for

instance: U23U12 6= U12U23. We only considered exchanging neighbouring MZMs, but this can be

generalised, for example U13 = exp(π4γ1γ3) = U †12U
†
23U12 = U12U23U

†
12, so we can exchange any two

MZMs in the network.

3.2 Quantum computation

Equipped with the acquired knowledge we can tackle quantum computation. The basic idea is how to

construct unitary gates to perform computations and how to store quantum data in qubits in a way

that is robust against decoherence. A network of Majorana fermions is believed to be a possible

quantum system for future topological quantum computers (TQC). First, Majorana fermions are

topologically protected, i.e. stored information cannot be destroyed by a local perturbation. And

second, we already found non-abelian unitary braiding operators that manipulate a quantum state

in a nontrivial way. These operations are also topologically protected because, during braiding,

MZMs are far apart at any time. However TQC based on Majorana fermions could not provide all

of the unitary operations. For instance, a universal quantum computer should be able to perform

the two qubit gate CNOT:

CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (19)
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Figure 5. Basic concept of MZMs could be implemented in a complex architecture of a future topological quantum
computer. Copied from [8].

where we stick to the same representation depicted in section 3.1. The reason that CNOT can not be

realised just with braiding operations is that CNOT does not preserve fermion parity. [6] Universal

computation could still be realised with some non-topological operations and software redundancy

codes. In this context, huge progress was done in so called color codes whose architecture is beautiful

on its own (fig. 5), but the details are well beyond the scope of this article. [7, 8]

Now we can theoretically do manipulations in quantum state, but how can we get an output?

Quantum information is stored non-locally in MZMs. A Majorana mode can not be measured

individually, but only in pairs as MZMs are “halves” of a fermion. Measurement is done by bringing

two Majoranas together and fusing them into a fermion by adjusting the external potential in the

trivial phase. The overlap of Majoranas costs additional energy i
2 tγn,2γn+1,1 = t

(
ñ− 1

2

)
, expressed

by the occupation number ñ of the created fermion, which can be then measured.

4. Detection of Majorana fermions

In this section the detection of Majorana edge modes in a one-dimensional indium antimonide (InSb)

nanowire is presented. Until now we theoretically discussed MZMs in scope of the Kitaev model

and mathematically split the fermion operator into its real and imaginary part – the two Majorana

operators. The other question is if the theory can be observed in nature.

4.1 From the Kitaev model to an experiment

The Kitaev model served us well to get some intuition about MZMs and their applications. Recall

Bogoliubov-de Gennes Hamiltonian (11) for the Kitaev chain model:

HKitaev = (−2t cos k − µ) τz + 2∆τy sin k. (20)

For simplicity we will omit higher degree terms in the Taylor expansion of HKitaev and shift the

chemical potential parameter µ→ µ− 2t so that phase transition occurs at µ = 0:

H =
(
k2/2m− µ

)
τz + 2∆τyk, (21)

where m is an effective mass related to the parameter t.

We will make a few modifications toHKitaev to get a realistic Hamiltonian. First, the Hamiltonian

(1) assumes spinless fermions. Well, one could think that 1/2−spin fermions will have higher

degeneracy and the rest of the story is same. But 2−fold spin degeneracy would lead to two MZMs

at each edge, which is a whole fermion, meaning there is no topological quantum computation for

us. We solve this by adding the Zeeman coupling to an external magnetic field B to break the spin

degeneracy:

H =
(
k2/2m− µ−Bσz

)
τz + 2∆τyk, (22)
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where σz is the Pauli matrix acting in a spin space and as previous τi are the Pauli matrices acting

in a particle-hole Nambu space. The idea is to choose such B that one spin will be in a topological

phase and the other in a trivial phase.

In the Kitaev model we took a superconductor term that coupled neighbouring sites. In

momentum space that translated to a term which was proportional to ∆ · k that is the p−wave

pairing. In the real world, most of superconductors have s−wave pairing that has no momentum

dependence. The desired pairing in a semiconducting wire could still be induced by a proximity

effect of a s−wave superconductor. Here we skip a little technical step of changing the basis, also

to remain bulk spectrum gapped we have to take into account spin-orbit coupling HSO = ασyk.

Finally we end up with a Hamiltonian for a wire:

Hwire =
(
k2/2m+ ασyk − µ

)
τz +Bσz + ∆τx. (23)

At k = 0 it has 4 levels with energies

E = ±B ±
√
µ2 + ∆2 (24)

and we expect the system to be topological when

B2 > ∆2 + µ2. (25)

4.2 Experimental evidence

Signatures of Majorana fermions were observed by V. Mourik et al. in ref. [9] in a hybrid

superconductor-semiconductor nanowire device consisting of indium antimonide (InSb) contacted to

one normal (gold) and one superconducting (niobium titanium nitride) electrode. The experimental

configuration is shown in figure 6.

Figure 6. (A) Schematics of the InSb wire experiment. (B) Picture of the experimental layout. Adapted from [9].

Tunneling spectroscopy from a normal conductor into superconductor revealed Majorana zero

mode as a zero-bias peak (ZBP) for a large range of applied magnetic fields B and gate voltages at

a temperature of 70 mK. The main result is shown in figure 7, where distinct peaks of differential

electrical conductance dI/ dV are seen at voltage V = 0. Magnetic field was incremented from 0

(bottom) to 490 mT (top) in 10 mT steps. The ZBP is present from B ∼ 100 mT to ∼ 400 mT,

which is in agreement with the theoretically predicted topological phase transition at B ∼ 150 mT

for µ = 0.

V. Mourik et al. ruled out other possible explanations, such as Kondo effect, Andreev bound

states etc., and concluded that the experiment reveals the Majorana zero mode.
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Figure 7. Zero-bias peaks in the differential conductance graph dI/ dV are seen at voltage V = 0. Experiment was
performed at 70 mK and external magnetic fields from B = 0 to 490 mT in 10 mT steps. (Traces are offset for clarity,
except for the lowest trace at B = 0.) The peaks at ±250 µV correspond to the gap induced by the superconducting
proximity effect. Adapted from [9].

5. Summary

The article presents the Kitaev chain model and the Majorana operators. Two fully dimerized cases

are written, one topological and the other trivial. Topological protection in condensed matter is

discussed.

The second section shows characteristics of the non-abelian statistics of Majorana zero modes

and presents braiding operations that serve as a promising step to topological quantum computation

(TQC). However braiding operations are not sufficient for a universal quantum computer.

Finally, it adds a few more steps in applying the Kitaev model to a realistic nanowire system.

Experimental evidence of the Majorana zero mode in InSb nanowire is presented. Experiment shows

distinct zero-bias peaks in electrical conductance in a wide range of applied external magnetic fields

and confirms the existence of Majorana fermions in condensed matter physics.
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