
“MileVrbica-KvantnaDekoherenca” — 2019/3/19 — 18:09 — page 1 — #1

QUANTUM DECOHERENCE

MILE VRBICA

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

In this article the the process of environment-induced quantum decoherence will be studied from the perspective
of quantum-to-classical transition. The formalism of density operators will be briefly introduced. Methods for finding
states that are minimally influenced by the interaction with environment will be mentioned and loss of certain quantum
properties in open systems explained. Some real-world experiments and examples will be given, among which the
commonly encountered example of decoherence due to scattering will be described in more detail.

KVANTNA DEKOHERENCA

Članek bo preučeval pojav kvantne dekoherence s perspektive prehoda iz kvantne v klasično mehaniko. Vpeljal
bo formalizem gostotnih operatorjev. Omenil bo metode za iskanje kvantnih stanj, na katere okolje minimalno vpliva.
Pojasnil bo izgubo nekaterih kvantnih lastnosti odprtih sistemov. Navedel bo nekaj zgledov in poskusov iz resničnega
sveta, med katerimi bo največ pozornosti posvetil dekoherenci zaradi sipanja.

1. Introduction

While the quantum theory continues to give exceptionally accurate results, some of its aspects

remain elusive from its very beginnings. When the superposition principle was first introduced a

hundred years ago, it appeared to give completely counter-intuitive or even ridiculous predictions

that seemed impossible to unify with apparently classical framework. Yet so far every seemingly

paradoxical prediction of quantum theory has turned out to hold true and it appears that our

intuition about what nature ought to be was mistaken. What makes our everyday world appear

so classical then? Why do we not observe macroscopic non-local phenomena, interference patterns

with everyday objects or superpositions of different types of fruits? After all, quantum mechanics

does not fundamentally forbid it.

In attempt to answer those questions we have to consider interaction between a system and

it’s environment. In this article we will explore the phenomenon of environment-induced quantum

decoherence (hereinafter referred to as only quantum decoherence), which essentially means the loss

of “quantum behavior” due to the interaction with environment. The first to explore the theory of

decoherence was a German physicist H. Dieter Zeh in 1970. Although not very widespread at first,

the field has been subjected to extensive research in the last decades, mostly due to its application in

the science of quantum computation. We will tackle the problem of quantum-to-classical transition

and quantum measurement and see to what extent they can be solved with our current knowledge.

2. The Formalism of Composite Systems and the Density Operator

In the theory of decoherence we will study the effects of the inevitable interaction of a known quan-

tum system with its environment. We will therefore study the quantum system containing both the

quantum system of interest and the environment. In this chapter we introduce the mathematical

formalism that is well suited for treatment of composite quantum systems and the statistical pro-

perties of its subsystems. Note that in this chapter we will only deal with finite-dimensional Hilbert

spaces, but for our uses a similar formalism holds for infinite-dimensional spaces.
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2.1 Composite Systems

Suppose we have two Hilbert spaces A and B with dimensions m and n respectively. Let {|ai〉} be

an orthonormal basis for A and {|bj〉} an orthonormal basis for B. We define their tensor product

A⊗ B as a Hilbert space of dimension mn with the set of its orthonormal basis vectors written as

{|ai〉 ⊗ |bj〉 | i = 1, 2, ...,m; j = 1, 2, ..., n}. (1)

Here we say that |ai〉 ⊗ |bj〉 is a tensor product of vectors |ai〉 and |bj〉. Tensor product is linear in

both its factors

|ψ〉 ⊗ (α1 |φ1〉+ α2 |φ2〉) = α1 |ψ〉 ⊗ |φ1〉+ α2 |ψ〉 ⊗ |φ2〉 (2)

(α1 |ψ1〉+ α2 |ψ2〉)⊗ |φ〉 = α1 |ψ1〉 ⊗ |φ〉+ α2 |ψ2〉 ⊗ |φ〉 . (3)

For a product vector |ψ〉 ⊗ |φ〉, the corresponding bra is

〈ψ| ⊗ 〈φ| = (|ψ〉 ⊗ |φ〉)†. (4)

If the vector |v〉 can be written as |u〉⊗|v〉 where |u〉 ∈ A and |v〉 ∈ B, it is called a product state,

otherwise it is called an entangled state (an example would be |u1〉⊗|v1〉+ |u2〉⊗|v2〉 for |u1〉 6= |u2〉
and |v1〉 6= |v2〉). When the quantum system is in a product state, it is possible to treat both

systems individually without any loss. Contrarily, if the system is in an entangled state, we cannot

treat subsystems independently due to the correlations that arise between them. In this case the

results of measurements performed on individual subsystems separately will not be independent.

Entanglement is a completely quantum phenomenon with no classical analogue and is of crucial

importance in the theory of quantum decoherence.

If A is an operator on the elements belonging to space A, and B on elements belonging to B,

we can construct tensor product of operators A and B as follows:

(A⊗B)(|ψ〉 ⊗ |φ〉) = (A |ψ〉)⊗ (B |φ〉). (5)

The parenthesis can be safely omitted on the right hand side of the equation.

2.2 Density Operator

Instead of describing a quantum system with a state ket, we can attribute an operator to the

state called the density operator1. The density operator formalism is indispensable when treating

subsystems of a composite system or a system we have insufficient knowledge of.

Firstly we must define the terms pure state and mixed state. A pure state is a state completely

described by a state vector from the corresponding Hilbert space. By knowing what pure state the

system is in, we posses maximal possible information about the system.

A mixed state is a term for describing a system which is in one of several different pure states,

in each with a certain probability. It is very important to note that in such case the system is still

physically in a pure state, it is merely us who are ignorant about which pure state the system is in.

Suppose we have a set of n states {|ψi〉 | i = 1, 2, ..., n} we know the probability pi for the physical

system to be in the state |ψi〉. We define the density operator ρ as a weighted sum of projectors

|ψi〉〈ψi|

ρ =
n∑
i=1

pi |ψi〉〈ψi| , (6)

1Commonly referred to as the density matrix
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with the conditions
n∑
i=1

pi = 1; pi ≥ 0. (7)

The density operator represents a pure state only when the sum 6 has only one term. There is an

important distinction between the sum over the basis vectors as
∑
ci |ψi〉 and the equation 6. The

former represents a quantum superposition where all the states coexist, whereas the latter takes

into account our ignorance about the state of the system only as a classical probability. The most

crucial difference in behavior of quantum superposition and classical probability is perhaps that

interference phenomena can be observed in the former.

To illustrate the difference on the density operator, suppose we have a quantum system described

by a 2-dimensional Hilbert space (commonly referred to as qubit) with its orthonormal basis vectors

|0〉 and |1〉. Let us define |ψ〉 = (|0〉+ |1〉)/
√

2. Let us construct two different density operators ρ1
and ρ2

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|) ρ2 = |ψ〉〈ψ| = 1

2
(|0〉〈0|+ |1〉〈1|+ |0〉〈1|+ |1〉〈0|). (8)

Density operator ρ1 represents a mixed state, as it is a weighted sum of two projectors, while the

density operator ρ2 represents a pure state. We see that both operators have the terms |0〉〈0| and

|1〉〈1| in common. Should we write the density operator in the matrix form in the basis {|0〉 , |1〉}
we would see those terms as diagonal terms. The mixed terms (|0〉〈1| and |1〉〈0|) of the pure state

are called the interference terms in the basis {|0〉 , |1〉}. They would correspond to the off-diagonal

elements in the matrix form of the density operator. Note that the interference terms are basis

dependent, which means that mixed states can certainly have off-diagonal terms. It can be shown

that a density operator ρ represents a pure state exactly when tr
(
ρ2
)

= 1. If this criterion does

not hold, the density operator represents a mixed state. Trace is a basis independent operation,

therefore the choice of basis does not affect whether the density operator corresponds to a pure or

a mixed state.

While the density matrix is a very useful way to describe a quantum system, it does not provide us

with the exact set of possible pure states. There is a lot of different density operator decompositions

which give us the set of possible pure states with corresponding probabilities. While we may not

know from the density operator alone what is the set of possible pure states, there is no measurable

property that would allow us to differentiate between different possible sets.

2.3 Partial Trace

Suppose we have a state described by a density operator ρAB on a composite Hilbert space A⊗ B
but the subsystem corresponding to B is somehow inaccessible, therefore we are only interested in

the properties of the subsystem corresponding to A. In other words, we only want to use operators

of the form S ⊗ 1. If our state was a simple pure product state there would be no difficulty in

acquiring all the measurable statistics of the chosen subsystem. However, if the system is in an

entangled state, we use an operation called partial tracing. This is an operation on the density

operator similar to tracing, except that it applies only to a chosen subsystem. When we perform

a partial trace on operator ρAB over B we get a new operator ρA which contains all the statistics

we could possibly acquire with performing measurements on system A, provided we do not have

any information of any measurements on system B. We define partial trace over B on the operator

|ψ〉〈ψ| ⊗ |φ〉〈φ| as

trB(|ψ〉〈ψ| ⊗ |φ〉〈φ|) = |ψ〉〈ψ| ·
n∑
j=1

〈bj |φ〉 〈φ|bj〉 , (9)
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where |bj〉 are the basis vectors of B. Along with equation 9 we require that partial trace is a linear

operation. We are now equipped for computing a partial trace on a general density operator. A

density operator acquired with performing a partial trace on a larger density operator is called a

reduced density operator.

2.4 Proper and Improper Mixtures

In chapter 2.2 we introduced the concept of mixed states. We were talking about states with

unknown exact quantum state. Such statistical mixtures are called proper mixtures. Suppose we

have a density operator of a pure state on composite system and we trace out one of the subsystems.

We can end up with a density operator that behaves like one of a mixed state. We say that the

remaining subsystem is an improper mixture, since it behaves like a mixed state, even though the

system is physically in a pure state.

3. The Problem of Quantum-to-Classical Transition

3.1 The Problem

Ever since the formulation of quantum theory its non-intuitive nature has boggled the minds of

physicists and philosophers alike. The superposition principle works indisputably well with analysis

of quantum systems and yet it is fundamentally difficult to grasp in everyday classical world. While

being completely used to interference phenomena with, say, photons, interference experiments with

macroscopic objects do not seem possible.

An even more mind-boggling problem than the ones mentioned above is the problem of the wave

function collapse. In the Copenhagen interpretation there exists a so-called Heisenberg cut that

separates the quantum system and the classical measuring device in experiments. The Heisenberg

cut seems arbitrary to some degree and is certainly unsettling, since we can consider both the

measured system and the measuring device as one larger quantum system that evolves unitarily.

It seems natural then to consider the whole universe as an isolated quantum system that evolves

unitarily, however, difficulties soon arise when we consider that the experiments we perform (as part

of this unitarily evolving universe) still happen to have definite outcomes. This is commonly called

the measurement problem and is the focal point of different interpretations of quantum mechanics.

3.2 The Schrödinger’s Cat

The problem is popularly illustrated with the paradox of Schrödinger’s cat. The scenario is as

follows: there is a cat in a completely sealed and opaque box, along with a radioactive source,

radioactivity monitor, hammer and a flask of strong poison. If the radioactivity monitor detects

an emitted particle from the radioactive source (a process which is completely random and is in

no way predetermined), it triggers the hammer so that it smashes the flask, releasing the poison

into the air and instantly killing the cat. In a simplification of the problem we have a vector from

the Hilbert space with the basis {|alive〉 , |dead〉} corresponding to the cat as whole. It seems very

natural that the cat will be either dead or alive, but quantum theory does not forbid states such

as (|alive〉+ |dead〉)/
√

2. The main question that arises is why it is so natural that the cat will be

found in either |dead〉 or |alive〉 state and not in either (|alive〉+ |dead〉)/
√

2 or (|alive〉−|dead〉)/
√

2

for example. What is the process that eliminates the latter states and makes them nonobservable

on macroscopic scales? Does Schrödinger’s cat collapse into either |alive〉 or |dead〉 when we open

the box, or was it in one of those states before we even touched the box? If it does collapse in such

manner, what makes it collapse into the {|alive〉 , |dead〉} basis?
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3.3 The Three Subproblems

We can decompose the problem of quantum-to-classical transition into three parts, following Schlos-

shauer [1]:

• The problem of the preferred basis – Why do we usually observe objects with well defined

position rather than superposition of positions? Why do we observe cats only as dead or alive

and not a superposition?

• The problem of nonobservability of interference – Why can we not observe interference pheno-

mena with macroscopic objects?

• The problem of outcomes – If the time evolution of the universe is unitary, then why do we

observe definite outcomes of experiments? Why do we not observe superpositions of different

measurements? Is there truly a wave function collapse and if so, how exactly does it happen?

The theory of decoherence addresses the problem of the preferred basis and the problem of no-

nobservability of interference. The problem of outcomes remains mostly a matter of interpretations.

4. Quantum Decoherence

In this chapter we will deal with the loss of interference terms – a process called quantum decohe-

rence. Throughout our analysis we will assume that system always evolves unitarily according to

Schrödinger’s equation.

Suppose we have a quantum system, that can be isolated at first. If we are to measure any

property of that system we will inevitably have to make it interact with the environment – the

measuring device. This is a crucial difference between a classical and a quantum measurement.

In the classical world we can usually measure quantities virtually without disturbing the observed

system. In the quantum world, interaction between the observed system and the measuring device is

inevitable and irreversibly affects the state of the composite system. The measuring device and the

observed system become entangled. Much like above, an open quantum system gets entangled with

its environment (like a dust particle that gets entangled with the light or air molecules scattering

off it), which results in our inability to fully describe the quantum system with a pure state ket,

no matter how weak the interaction was (which is completely unlike in classical mechanics, where

there is no entanglement and we can effectively ignore very weak interactions). We could say that

environment is effectively a measurement device of some sort.

4.1 Von Neumann Measurement Scheme

Von Neumann developed an ideal measurement scheme where he treated both the quantum system

and the measuring device as quantum objects. As we shall see, it has direct relation to the theory

of quantum decoherence.

Suppose we have the measured quantum system described by a Hilbert space S with basis vectors

{|si〉} and a measuring device described by a Hilbert space M with basis vectors {|mi〉}. Let us

assume the measuring device is initially in a ready state |mr〉. Suppose the measuring device has

a pointer that moves to position i if the state |si〉 is measured to be in state |si〉. In that case the

measuring device would be in state |mi〉. Summarizing the process of measurement we have

|si〉 |mr〉 −→ |si〉 |mi〉 . (10)
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We see that we end up with a separable product state. Suppose we start with a general |ψ〉 describing

the measured system

|ψ〉 |mr〉 =

(∑
i

|si〉

)
|mr〉 =

∑
i

|si〉 |mi〉 . (11)

Here we see that the final state of the system is an entangled state. This kind of measurement is

called ideal or non-demolition measurement because it does not disturb the state of the measured

system.

4.2 Environment as a Measuring Device

Let us consider an object, say a physics textbook, laying on a table. Every second a colossal amount

of air molecules and photons scatter of the textbook. A different orientation of the textbook would

without doubt affect the final state of air molecules and photons. At least to some degree we will be

capable of deducing the books orientation from the scattered particles alone (after all, that’s how

we use our vision). We can say that environment carries away information about the state of the

textbook as a consequence of quantum entanglement.

Let us look at a more general case and suppose we have a quantum system |ψ〉 described by

a superposition of two orthogonal quantum states |ψ1〉 and |ψ2〉, so that |ψ〉 = (|ψ1〉 + |ψ2〉)/
√

2.

Let |E0〉 describe the environment before its interaction with the quantum system and let |ψ1〉 and

|ψ2〉 interact with the environment in a way completely analogous to von Neumann measurement

scheme

|ψ1〉 |E0〉 −→ |ψ1〉 |E1〉 (12)

|ψ2〉 |E0〉 −→ |ψ2〉 |E2〉 . (13)

If we let |ψ〉 interact with the environment we have

|ψ〉 |E0〉 =
1√
2

(|ψ1〉+ |ψ2〉) |E0〉 −→
1√
2

(|ψ1〉 |E1〉+ |ψ2〉 |E2〉). (14)

We are, of course, mostly interested in the behavior of the chosen quantum system rather than the

composite system. If we write the density operator of the final state and trace out the environmental

part we get

ρψ =
1

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ1〉〈ψ2| 〈E2|E1〉+ |ψ2〉〈ψ1| 〈E1|E2〉). (15)

Suppose |ψ〉 represents a textbook in two different orientations and |E0〉 represents the surrounding

photons and air molecules. Provided we have enough photons of sufficiently small wavelength we will

certainly be able to visually tell apart different orientations of the textbook. That means states |E1〉
and |E2〉 will be almost perfectly distinguishable, which means that 〈E1|E2〉 ≈ 0 (the approximation

is very good due to the usually extremely large number of degrees of freedom involved). It follows

that the interference terms in equation 15 vanish, leaving us only with an improper mixture of |ψ1〉
and |ψ2〉. This is the very essence of decoherence.

We worked with such states |ψ1〉 and |ψ2〉 that behave according to equations 12 and 13. These

states do not get entangled with the environment (the reduced density operator corresponding to

|ψ1〉 |E1〉 is the same as the density operator corresponding to |ψ1〉 only). States (|ψ1〉 + |ψ2〉)/
√

2

and (|ψ1〉 − |ψ2〉)/
√

2 do get entangled with the environment and are subjected to decoherence,

while their sum and difference, which are again |ψ1〉 and |ψ2〉 respectively, do not. We wish to find

states that are robust to the interaction with the environment like |ψ1〉 and |ψ2〉 are. Those states

will not be subjected to decoherence in any way, while their superpositions will usually be quickly

(usually exponentially) reduced into improper mixtures. States that satisfy such stability criterion

are commonly called pointer states.
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4.3 Environment-Induced Superselection

The process of environment“choosing”the pointer states over their superpositions is called environment-

induced superselection, or commonly einselection. Our goal is to study the properties of such states

and thus addressing the preferred basis problem.

Let us suppose our system S ⊗ E is composed of the observed quantum system S and the much

larger environment E . We wish to find the pointer states |ψi〉 that are stable when time evolution

is governed by the Hamiltonian H. In mathematical language this means that

e−iHt |ψi〉 |E0〉 = |ψi〉 |Ei(t)〉 , (16)

assuming the Hamiltonian is time independent. First lets consider the case whereH has the structure

H = S ⊗ E. (17)

If |ψ〉 is the eigenstate of operator S (and in turn of the operator e−iSt) we get

e−itS⊗E |ψi〉 |E0〉 = λi |ψi〉 e−iEt |E0〉 = |ψi〉 |Ei(t)〉 , (18)

where |Ei(t)〉 = λie
−iEt |E0〉 (E being an operator). We see that |ψi〉 being an eigenstate of S exactly

fulfils the condition for |ψi〉 being a pointer state. It follows that the observables, corresponding to

Hermitian operators that commute with S, remain well determined through time.

We can always decompose the Hamiltonian of the composite system into an interaction Hamil-

tonian Hint, environment self-Hamiltonian HE and observed system self-Hamiltonian HS

H = Hint +HE +HS . (19)

If the HE and HS are negligible then Hint dominates the time evolution of the system. In a significant

number of cases, Hint is of the form of equation 17, where S commutes with the position operator

due to the nature of inter-particle potential. Eigenstates of S will therefore be position eigenstates.

The pointer states in this case will not be position eigenstates exactly because of inevitable HS that

usually has de-localizing effect, but due to Hint being predominant, the pointer states will be well

localized. Even though we only considered a limit case, good localization of pointer states definitely

seems like a step in the right direction.

In general, where neither HE nor HSare negligible, we could attempt to find its corresponding

eigenbasis. This procedure usually happens to be very complicated or impossible in practice, so

several general methods have been development in the last decades. In the scope of this article we

will only mention and conceptually describe them.

Usually we are satisfied with finding very robust states over of the ones that are completely

stable. With a method developed by W. Zurek called the predictability sieve method we introduce a

measure of decoherence introduced into the system. This can be for example von Neumann entropy

or density operator purity among others. We then compute the time dependency of such a measure

for a large set of initial states. The states that show the least amount of decoherence introduced

into the system will be the most robust. The main flaw of this method is that different measures of

decoherence will choose different robust states. It has been shown that different appropriate choices

of measure affect the final states minimally, assuring the method’s stability.

If we return to the textbook on a desk from chapter 4.2 and remember that we, humans, can

reliably determine its orientation solely by the photons scattered off the book and absorbed by our

eyes, we can reflect on the fact that we do not need to “measure” the book to know its orientation

– the environment does it for us. It carries away useful information about the book – this is the

information that environment “effectively measures”. It turns out that the states which enable the
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environment “to measure” the largest amount of information about them are also the most robust

ones. Studying the information that can be stored robustly in the environment (in a way that would

make all observers agree upon what state the subsystem is in with making deductions only from

the environment) has proved to be an useful tool in determining the pointer states.

5. Decoherence Due to Scattering

Scattering is along with thermal radiation the predominant source of quantum decoherence. While

the number of air molecules and visible photons can be relatively easily minimized, we are still

left with cosmic particles, microwave background and thermal radiation, which makes decoherence

practically inevitable. We emphasize again that, unlike in the classical case, scattering affects the

quantum object’s state significantly even if the effect on its center of mass is negligible. In this

chapter we will summarize the results of theoretical predictions about quantum decoherence due to

scattering.

5.1 Coherence and Decoherence in Position Space

Since we will now work with wave functions from continuously infinite-dimensional space correspon-

ding to physical position we need to introduce the appropriate density operator. For a pure state

|ψ〉 the corresponding density operator is |ψ〉〈ψ|. The “matrix element” in position basis would be

〈x|ρ|y〉 = 〈x|ψ〉 〈ψ|y〉 = ψ(x)ψ∗(y), (20)

where ψ(x) denotes the usual wave function in the position space. 〈x|ρ|x〉 of course corresponds to

the probability density and similarly to the discrete matrix form, non-zero values far from diagonal

x = y represent interference. Density operators that are very spread out in the direction perpendi-

cular to the diagonal (x=-y) will show great coherence in contrast to operators which are focused

around the diagonal.

5.2 Characteristic Times of Decoherence in Scattering Environment

In a very detailed analysis found in Schlosshauer [1] (Chapter 3), an explicit time evolution of a

wave packet in a general scattering environment is obtained. In this article we will only use the

main results as an illustration of decoherence in action. In the derivation the following assumptions

were made:

• There are no initial correlations between the system and the environment.

• The problem is invariant under translations of composite system.

• Center of mass of the object is not disturbed by scattering (the object of interest is much more

massive than its surrounding particles)

• The rate of scattering is much higher than the characteristic rate of change of the state of the

system induced by the system’s self Hamiltonian.

• The distribution of incoming particles is isotropic.

Time evolution of the reduced density operator ρp for the particle is obtained

〈x|ρp(t)|y〉 = 〈x|ρp(0)|y〉 e−t/τ , (21)

τ = τ(|x− y|). (22)
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Environment Dust grain Large molecule

Cosmic background radiation 1 s 1024 s

Photons at room temperature 10−18 s 106 s

Best laboratory vacuum 10−14 s 10−2 s

Air at normal pressure 10−31 s 10−19 s

Tabela 1. Theoretical estimates of decoherence timescales for a dust grain of size 10−5 m and a large molecule of
size 10−8 m. Size of the particle is used as the parameter |x− y| from equation 21 [1]

.

The characteristic decoherence time τ is a function of distance from the diagonal |x− y|. In general

it will hold that for greater |x− y| the characteristic time τ will be smaller. This will lead to

the density operator becoming narrower in the direction perpendicular to the diagonal, illustrating

decoherence.

Table 1 shows the theoretically predicted characteristic timescales of decoherence for differently

sized particles in different environments. The size of particles is used as the parameter |x− y|,
which is also the only property of the particles used in this derivation. Timescales of decoherence

for macroscopic and mesoscopic objects are outstandingly small, much smaller than any measurable

physical process in any conceivable circumstances (like dissipation). We can clearly observe that

decoherence process is extremely efficient in localizing any objects that may find themselves in a

scattering environment.

6. Examples and Experiments

Here we will mention a few experiments supporting decoherence theory and some examples of

decoherence in action.

• First experimental verification of decoherence theory was done in 1996 ([11]) where gradual well-

controlled decoherence of superposition of two energy eigenstates of 9Be+ ions was observed.

• An important milestone was reached when interference was observed in experiments with large

C70 molecules – in an experiment similar to the double-slit setup ([12]), it was observed that

the visibility of the interference pattern decreases exponentially with pressure of surrounding

gas, agreeing with theoretical predictions. The order of magnitude of pressures was 10−6 mbar

(which is considered a good vacuum), where visibility of the interference pattern was well below

50%. This experiment directly confirmed localization due to environment induced decoherence

and neatly illustrated its dramatic effects even in a good vacuum.

• In quantum computing decoherence presents a major setback in physical realization of quan-

tum computers. That is because the advantages of quantum computing lie in using coherent

superpositions that are easily destroyed even by a minimal interaction with the environment.

There is a lot of active research being conducted about how to overcome this difficulty. Without

going into much detail we only acknowledge that decoherence has been studied extensively in

different implementations of quantum computers, for example with superconductive quantum

interference devices (SQUIDs).

• An intriguing example of decoherence in action is observed in certain chiral sugar molecules,

which are always observed in chirality (handedness) eigenstates, which are in fact superpositi-

ons of different energy eigenstates (corresponding to different energy) [13]. Should we try to
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maintain molecules in energy eigenstates, we would find that they decohere very quickly into

chirality eigenstates.

• So far we have most often come to a conclusion that decoherence usually localizes objects in

position space. That, however, is not always the case. In Brownian motion it happens that

particles localize in neither position nor momentum space but somewhere else in phase space.

It is a prime example of neither the self Hamiltonian nor the interaction Hamiltonian being

negligible.

• In nature we never observe superpositions of differently charged particles (for example a proton

and a neutron). Initially this was simply postulated as a superselection rule but was sub-

sequently explained ([9]) as a consequence of the charge’s interaction with its Coulomb field,

which plays the role of the environment. Charge superposition is thus quickly decohered into

an improper mixture.

7. Conclusion

The decoherence theory addresses the problem of interference and the problem of preferred basis

relatively successfully. The quantum-to-classical transition mystery remains largely unsolved due to

the problem of collapse but einselection certainly provides us with at least some explanation. It is

very tempting to think that decoherence resolves quantum superpositions into classical probabilities,

but we must remember that the “classical probabilistic nature” is only a consequence of tracing out

the environment leaving us with improper mixture. Thus we can explain the lack of interference

but the system as whole remains in a pure state and doesn’t intrinsically involve classical probabi-

lities. We therefore cannot confidently say that superposition is transformed into a true “either-or”

situation, we can only say it behaves as such when observing appropriately small subsystem. At

this point we should emphasize that decoherence is not an interpretational or philosophical matter

but an experimentally supported physical theory that, among other applications, relates to measu-

rement problem and quantum-to-classical transition. The study of systems interacting with their

environment is of course a much wider field and the term decoherence is only used to describe the

loss of coherent superpositions. It is without doubt very satisfactory that we are provided with some

methodology of determining pointer states in a manner that is not completely ad hoc, and that we

have acquired theoretical background that explains the absence of many “nonsensical” quantum

phenomena in macroscopic world.

In this article we have only scratched the surface of the decoherence theory with introducing the

fundamental concepts. Many concrete models of decoherence have been developed and a number of

verifying experiments have been successfully conducted. Due to its relevance in the field of quantum

computing it remains an active field of research.
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