
“Matic Petric Matrika revised final” — 2019/4/11 — 12:39 — page 1 — #1

EFFECTS OF FLEXOELECTRICITY IN LIQUID CRYSTAL BLUE
PHASES

MATIC PETRIČ
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Blue phases are mesophases that emerge in chiral nematic liquid crystals. The main goal of this article is
to emphasize that crystalline unit cells of the molecular orientational order can emerge in these mesophases
(blue phases I and II), and are stable over a wide temperature range as a result of flexo- and order electricity.
After a brief review of liquid crystal basics, and the order parameter, the total free energy is introduced. The
structure of blue phases is discussed, as well as compared to the results obtained with numerical simulations.
Flexo- and order electricity in blue phases and their contribution to their stability is examined. At last, a
possible application of making microscopic channels for ion transport in such materials, is described.

VPLIV FLEKSOELEKTRIČNOSTI V TEKOČEKRISTALNIH MODRIH FAZAH

Modre faze so mezofaze, ki se pojavijo v kiralnih nematilnih tekočih kristalih. Glavni cilj članka je
poudarek, da lahko v modrih fazah najdemo kristalinične osnovne celice molekularnega reda. Takšne strukture
so stabilne tekom širokega temperaturnega območja kot posledica vpliva fleksoelektričnosti, ter električnosti
reda. Po kratkem uvodu s ponovitvijo osnov tekočih kristalov, je vpeljan parameter reda, ter celotna prosta
energija. Prav tako je komentirana struktura modrih faz, ter primerjana z rezultati numeričnih simulacij. Še
posebej se članek osredotoči na vpliv fleksoelektričnosti, ter električnosti reda. Za konec je opisana še možna
uporaba omenjenih vplivov za izdelavo mikroskopskih kanalov za transport ionov v takšnih materialih.

1. Introduction

Crystalline unit cells of the molecular orientational order can emerge in certain liquid crystal

mesophases, called the blue phases. Recently, advancements in extending the temperature

range in which blue phases are stable have been made. The goal of this article is to provide

insights in the theory behind this novel topic as well as further explore yet another effect

that turns out to affect the stability criteria.

In 1959, Richard Feynman stated that there’s still plenty of room at the bottom, motivating

scientists around the globe to build a microscopic engine. This was the figurative beginning

of so-called Micro-Electro-Mechanical systems, or MEMS for short. On the verge of the 21st

century, nanotechnology started gaining more mainstream attention, and MEMS with it.

We can now build sensors and other devices at the micrometer scale with countless possible

applications, for example an intra-ocular pressure sensor that provides information to doctor

of patients dealing with glaucoma. However, when it comes to the transport of ions, the

manufacturing process of nanowires is technologically demanding and therefore expensive.

The reaching idea of the seminar is to show how flexoelectric nature of blue phases could be

used and designed to offer an alternative to nanowires.

Liquid crystals flow like simple liquids, while also exhibiting crystal-like optical properties

of molecular ordering. Nematic liquid crystals consist of anisotropic molecules that align

to acquire orientational order, while their position remains disordered. Because of this,

liquid crystals are apolar. Sure enough, highly symmetric molecules, that lack net polarity,

form liquid crystals. Polar molecules can, however, also form liquid crystals, which leads to

flexoelectricity and order electricity, further discussed later on [1].
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Molecular alignment is described by a headless vector n, called the director; with states n

and −n being equivalent. We can further divide the nematic phase based on the presence of

chiral molecules into non-chiral nematics and chiral nematics, often labeled as cholesterics.

The former contain achiral molecules resulting in an inversion symmetry of the fluid, whereas

in the latter, the left- and right-handed versions of the same molecule (or the dopant) are

not equally represented. Alternatively, chiral dopant molecules can be added into a system

of achiral nematic molecules [1].

Flexoelectricity is a second-order piezoelectricity involving certain second-order strains of

the liquid crystal structure, that is, curvatures rather than the first-order shear strains of

piezoelectric crystals. If the liquid crystal undergoes an elastic deformation, or an electric

field is applied, the polar molecules align themselves to induce macroscopic polarization. The

effect itself is negligible in most materials; it plays a greater role, however, in highly bent

materials such as blue phases. In recent years, more and more research has been focused on

observing the effects flexoelectricity and order electricity bring to the table [2].

This article is organized as follows: In section 2 we delve into the effects that contribute

to the extended Landau-de Gennes free energy. Electric field effect is also discussed and

regimes with either fixed charge or fixed voltage are considered. In section 3 we introduce

flexo- and order electricity and the consequential rise of macroscopic polarization, as well

as constructing the corresponding free energy density. At last, we introduce special blue

phase structures that appear in liquid crystals and study the flexoelectricity. We also touch

upon how ions can further stabilize the blue phase and present a possible application for ion

transport.

2. Landau-de Gennes free energy

The main theoretical concept that we use to describe macroscopic properties of confined

liquid crystal samples, is that of the free energy F . The optimal configuration of the tensor

order parameter can be calculated with minimizing the functional.

The extended Landau-de Gennes free energy functional can be written in the following form

F =

∫
(fe + fD + fion + fG)dV +

∫
fWdS, (1)

where fe is the distortion free energy density, fW is the contribution from anchoring of the

liquid crystal on the boundary, fD describes coupling with external electric field D, fion
accounts for the screening effect of free ions, and lastly fG is the corresponding flexoelectric

and order electric term.

2.1 Nematic order parameters

The nematic liquid crystal orientational order can be described by either a vector or by

tensor order field. The director field n = n(r) represents the average orientation of molecules.

Orientational fluctuations of the molecules around the director, as a result of thermal fluc-

tuations, can be quantified by introducing the nematic degree of order S. It is defined as an
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ensemble average of the second Legendre polynomial

S = 〈P2(cos θ)〉 =
1

2
〈3 cos2 θ − 1〉, (2)

where θ represents the angle between the molecular long axis and the director. We see that

if all molecules point along the director such that θ = 0 for all molecules, then the order

parametar equals S = 1. This state corresponds to perfect nematic order. If the molecules

are oriented isotropically, 〈cos2 θ〉 = 1/3 and S = 0, this is the isotropic phase. A special

kind of nematic orientational order is that with all molecules perpendicular to the director

(θ = π/2). In this case, S = −1/2.

Order parameter Q of an uniaxial liquid crystal is defined as

Qij =
S

2
(3ninj − δij). (3)

It is a traceless, symmetric, second rank tensor based on the anisotropic part of the dielectric

tensor. Using a tensor allows both the magnitude and the direction of the order to be

recorded. With this normalization, the largest eigenvalue describes the nematic degree of

order S and the corresponding eigenvector characterizes the director n. The eigenvalues

corresponding to the directions perpendicular to n are identical and equal to S = −1/2.

In case of biaxial order, the eigenvalues corresponding to the perpendicular directions to n

are not identical, therefore the degree of biaxiality P is introduced. In this case, the order

parameter is written as

Qij =
S

2
(3ninj − δij) +

P

2
(e

(1)
i e

(1)
j − e

(2)
i e

(2)
j ), (4)

which besides the scalar order parameter S and the director n includes also the biaxial or-

dering around second director e(1) with the degree of biaxiality P = 1
2

〈
sin2 θ cos 2φ

〉
, with φ

representing the azimuthal angle of the molecular long axis.

Another interesting fact is that a nematic liquid crystal molecule has 5 degrees of freedom. A

second rank tensor has 9 degrees of freedom, but the symmetric nature of the order parameter

tensor reduces the number to 6. The fact that Qij is traceless drops the number of degrees of

freedom to 5. This parametrization then consists of two angles determining the orientation

of the director, the scalar order parameter, and the angle specifying the orientation of the

secondary director as well as the parameter of biaxiality.

2.2 Distortion

To describe the spatially distortion of the director n(r), Frank theory is used. For chiral

nematics the Frank free energy reads

fd =
K11

2
(∇·n)2+

K22

2
(n · ∇ × n− q0)2+

K33

2
(n×∇×n)2−K24

2
∇(n(∇·n)+n×∇×n), (5)

where the three terms represent the splay, twist, bend, and saddle-splay deformations,

whereas K11, K22, K33, and K24 are the corresponding elastic constants. q0 is the para-

meter of chirality, related to the pitch of the helical phase by p = 2π/q0. The last term can
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sometimes be omitted, because it can be transformed to a surface integral via Gauss theorem.

Since the elastic constants are typically not very different from one another, they are some-

times assumed to be equal. This leads to the one-constant approximation, where the distor-

tion free energy is expanded in powers of order parameter tensor Qij and its first derivatives

fe =

(
A

2
QijQij −

B

3
QijQjkQki +

C

4
(QijQij)

2

)
(6)

+

(
L

2

∂Qij

∂xk

∂Qij

∂xk
+ 2q0LεiklQij

∂Qlj

∂xk

)
, (7)

where A, B, and C are nematic material constants, L is the single elastic constant, q0 is the

parameter of chirality, and εijk is the Levi-Civita tensor [2].

2.3 Electric field effects

To characterize the effect of internal or external electric field on chiral or achiral nematic

liquid crystal, an additional free energy term is needed.

Liquid crystals are anisotropic materials, meaning that the electric permittivity tensor εij is

anisotropic and is related to the order tensor parameter by

εij = ε̄δij +
2

3
(εm‖ − ε

m
⊥ )Qij , (8)

where ε̄ = Tr(ε/3) is the macroscopic permittivity and εmi are the molecular dielectric per-

mittivities parallel and perpendicular to the nematic director, respectively.

On the molecular scale, electric field couples with nematic through the dielectric interaction

with induced dipoles of the nematic molecules. The thermodynamic potential for dielectric

coupling distinguishes between the regimes with either fixed charge or fixed voltage. The

work done on electrically insulated body in the fixed charge regime induces an electric field

in dielectric media, which attributes to the change of the total free energy as

f chargeD =
1

2

∫
E dD, (9)

where E is the electric field and D electric displacement field. In the case of the fixed

voltage regime, where the electric field E is independent, it is beneficial to introduce a new

thermodynamic potential instead of D as

fvoltD = −1

2

∫
D dE (10)

Assuming linear relations D = εE above equations differ only by sign. Free ions are neglected

and will be added later.
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Combining the equations above, the dielectric coupling within the LdG framework is intro-

duced as

fD = ±1

2
ε0εijEiEj , (11)

where ε0 is the dielectric vacuum permittivity constant and εij is the electric permittivity

tensor [2].

The dielectric interaction provides a coupling between the nematic distortion field and electric

potential. The sign ± distinguishes between fixed charge and fixed voltage regime. Most

commonly electrodes on cell boundaries are connected and material exchanges charge with

its surroundings and the system is at a fixed voltage regime. On the contrary, if there is no

external field and the electrodes and material do not exchange charge with the surroundings,

the system has fixed charged regime [3].

Figure 1. The setup on the left is a representation of the fixed voltage regime, where two electrodes are
physically connected. Ions can therefore travel from one plate to another. On the right side, a case of fixed
charge regime is presented where electrodes are separated and ions are separated. Between the electrodes,
disclination unit cells of blue phase I and blue phase II are shown [2].

Effectively, the dielectric potentials for fixed charge or fixed voltage are different only by a

sign, but this makes for a crucial difference on the overall energetics of liquid crystals. As the

field couples directly to the orientational order parameter. This field is also quadratic in the

field strength and the molecules tend to align parallel or perpendicular to the field, depending

on the sign of the dielectric anisotropy. The dielectring coupling free energy density can be

written as

fD =
1

2
ε0εij

(
∂Φ

∂xi

)(
∂Φ

∂xj

)
, (12)

where ε0 is dielectric vacuum permittivity constant, and Φ is the dielectric potential E =

−∇Φ [2].

2.4 Free ions

Soft materials also generally have free ions that are screening the electric potential. In liquid

crystals their concentration is relatively low, however can become important in regions with

high electric field. Monovalent liquid crystals are assumed, which posses equal number of

positive and negative ions e0 = e+ = e− in equilibrium. As we will see, liquid crystal blue

phases induce highly nonuniform electric potential. The free ion term in LdG free energy

density can be approximately written as [2]

fion = ±2kBTc0

(
cosh

(
e0Φ

kBT

)
− 1

)
. (13)
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3. Flexo- and order electricity

Flexoelectricity occurs as a result of elastic distortions in liquid crystals, which cause the

emergence of flexoelectric polarization. If the liquid crystal is, for example, as shown in

Figure 2, composed of asymmetric molecules, an elastic distortion can lead to a spontaneous

polarization. Order electricity on the other hand, is a similar mechanism that also results in

spontaneous polarization, except that it is now a result of variation in the nematic degree of

order. If a polarization is induced by an external electric field then an elastic distortion is a

result of the torque P×E.

Figure 2. Induced polarization as a
result of splay and bend deformations
in liquid crystals with cone-shaped mo-
lecules (left) and banana-shaped mo-
lecules (right)[4].

Focusing solely on flexoelectricity, if the liquid crystal con-

sists of cone-shaped molecules, such molecule must pos-

sess an electrical dipole moment oriented either parallel

or antiparallel to the axis of the cone. A splay distor-

tion would tend to orient the cone molecules preferen-

tially, which results in net macroscopic polarization. If

molecules are instead banana-shaped, each must possess a

transverse dipole moment oriented either toward or away

from the center of curvature of the banana. In this case

a bend curvature would preferentially orient the bananas,

also resulting in polarization [4].

3.1 Induced flexo- and order electric polarization

Polarization induced by flexoelectricity and order elec-

tricity arises from distortion in the nematic profile and

is therefore proportional to gradients of the tensor order

parameter

PGi = Gijkl
∂Qjk

∂xl
, (14)

where Gijkl is in general a fourth rank coupling tensor.

A more common expression for the induced polarization is instead described by gradients

of the director field n and nematic degree of order S. In an uniaxial case the induced

polarization reads

PG = e1n(∇ · n)− e3(n× (∇× n)) + e2n(n · ∇S)− e0∇S, (15)

where e1 and e3 are flexoelectric coefficients corresponding to splay and bent distortions,

respectively, and e2 and e0 determine order electricity [14]. Often, single flexoelectric con-

stant approximation Gijkl = 1
2G(δikδjl + δijδkl), is used, which determines the coefficients

as e1 = e3 = 3
2SG, e0 = 1

2G, and e2 = 3
2G. We also introduce effective single flexoelectric

coefficient e = 3
2SG.

The flexoelectric and order electric polarization in nematic induces a non-uniform electric po-

tential Φ, that reflects the underlying profile of the nematic. The corresponding flexoelectric

and order electric free energy density can be constructed as

fG = G

(
∂Qij

∂xi

)(
− ∂Φ

∂xj

)
. (16)
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As we will see, this non-uniform electric potential plays a vital role in stabilizing blue phases.

Such structures are periodically highly deformed and exhibit aforementioned electric poten-

tial, which is induced by flexo- and order electricity.

Flexoelectricity is linear in the applied electric field and as such fundamentally different from

effects due to the anisotropy of the susceptibility in liquid crystals, which are quadratic in

the field strength. In a fixed geometry, the sign of the applied field matters, so positive and

negative fields can produce different responses, either linear or non-linear in nature, depend-

ing on the geometry of the particular sample and electrodes. One must also consider the

interaction of the field with the anisotropy of the polarizability of the medium, which tends

to align the director either parallel or perpendicular to the applied field. This can suppress

the flexoelectrically induced curvature in many geometries [4].

Flexoelectricity will produce space charges at the electrodes, but these can be screened by

free ionic charges in the material. Any fields produced by flexo-induced space charges would

only propagate a distance of the order of the Debye screening length.

4. Blue phases

When nematics are doped with chiral molecules they can show stable phases with a nat-

ural twist known as cholesterics. In general cholesteric phases form a one-dimensional helix

structure characterized by the helical vector field n(z) = (cos q0z, sin q0z, 0), where q0 is the

parameter of chirality, related to the pitch of the helical phase by p = 2π/q0. This is indeed

the favorable ordering without introducing defects or disclination lines into the structure.

The helical structure twists only in one direction perpendicular to the director, which is dif-

ferent as in blue phases, where effectively, twisting emerges in three spatial directions. Local

regions of double twist cylinders in the director field are possible. In this immediate region of

the cylinder axis, the double twist structure has a lower free energy than the helical phase [5].

Figure 3. a) double twist [5]; b) and c) show different projections of a double twist cylinder. Both a) and
b) are taken from [6].

The double twist cylinders can be considered as the essential building blocks of the blue

phases. They can be arranged in ways that minimize the unfavorably aligned regions in the

space between them. A local energy minimum cannot be extended throughout the whole

volume, hence blue phases represent a frustrated system. As one could expect, the formed

blue phases are inhomogeneous – the order parameter is spatially dependent. They are,

however optically isotropic, which means, that they show no net birefringence at the scales

of multiple unit cell lengths.
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When three double twist cylinders are stacked together, a defect in the director field is formed

at their effective junction region (see Fig. 4 and 5). To relieve the consequent elastic strain

energy in the right-handed corners, −1
2 topological line defects or disclinations appear in the

regions where the cylinder directors form singularities. Every stable cylinder structure is

therefore always accompanied with a distinct arrangement of disclinations.

There are two distinct ways of packing the double

twist cylinders, which are known as BPI and BPII. In

BPII, double twist cylinders are arranged into a peri-

odic array with simple cubic translational symmetry

constructing a so-called O2(P4232) space group (fig-

ure 4a) [5]. This layout succeeds to fill around 60% of

space with double twist cylinders, areas where the free

energy is lower than that of the helical phase (figure

4b) [5]. The layout also comes with a corresponding

defect unit cell arrangement as shown in figure 4c. [5]

In BPI, double twist cylinders are arranged into BCC

formations, which fall into the O8 space group (figure

5a) [5]. This layout succeeds to fill around 68% of space

with double twist cylinders, areas where the free en-

ergy is lower than that of the helical phase (figure 5b)

[5]. The layout also comes with a corresponding defect

unit cell arrangement as shown in figure 5c. These

sketches are a rough approximation of an actual blue

phase. If one is to acquire the order parameter tensor Qij after minimizing the free energy,

one can then present the defect arrangement in detail, while also showcasing the highly bent

and highly splayed regions [8].

Figure 4. Blue phase unit cells. a) Blue phase II. b) Blue phase I. Defect lines are drawn as white isosurfaces.
c) Splay and bend deformations are drawn with Splay-Bend parameter with highly bent regions drawn with
yellow and highly splayed regions drawn in blue [2].
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4.1 Stabilization using flexo- and order electricity

The energy of blue phases has two contributions: the elastic energy of a nematic which is

prevalent in double twist cylinders, and the energy of internal ordered structure, which is

a result of the presence of defect lines. Packing double twist cylinders in a finite confined

space results in singularities in the director field, which is why every stable blue phase struc-

ture comes along with its defect line lattice. Even with defect lines that are not efficient

energy-wise, and locally less favorable than the helical phase, the global free energy density

still remains lower compared to the helical phase.

Effects of the flexo- and order electricity on stability are typically negligible, but become

important in highly distorted regions, since the electric potential and changes in local free

energy are the largest there. It is interesting to consider possible effects of the flexoelectric

polarization in blue phases.

Flexoelectric polarization is induced by splay and bend elastic deformation on nematic around

defect lines and is given by the gradients of director field. In general, flexoelectricity only

plays a role when curvature distortions are involved or when there are inhomogeneous applied

fields.

Coles and Castles [10], as well as Yeomans and Alexander [11] have numerically shown that

flexoelectricity indeed stabilizes the blue phase while having little effect on the field-induced

birefringence. This is especially the case in new bimesogenic and bent-core materials with

large flexoelectric coefficients.

The following phase diagram is from a paper by Porenta, Ravnik, et al. [2] and shows the

stabilization in both constant charge and constant potential regime, also accounting for free

ions.

Figure 5. In constant charge regime (dark blue) BPI is strongly stabilized and phase region expands over
cholesteric and BPII region. In constant potential regime (dark green), no significant effect is observed.
Accounting free ions, phase diagram shows that free ions increases flexo- and order electric effect (light blue
– constant charge regime, light green – constant potential regime) [2].
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As we see, the BPI region of the phase diagram extends over cholesteric region as well as over

BPII region. The opposite is observed in constant potential regime where BPI is destabilized

while stability of BPII expands. Free ion effects must also be included in Blue Phases. Free

ions are screening the potential and further amplify the flexo- and order electric stabilization

of the structure.

4.2 Flexoelectric micro-channels in blue phase fluids for ion transport

Apart from further stabilizing the blue phase structure of chiral liquid crystals, the flexo-

electric effect could also be used in making microscopic channels for ion transport. Such

application is based on the effect of internal rise of electric potential due to deformation.

Porenta, Ravnik, et al. [2] used a numerical relaxation method to calculate effects of flex-

oelectricity, order electricity and free ions in nematic liquid crystal. Total free energy we

discussed in chapter 2 is minimized using Euler-Lagrange formalism. Equations for both

order parameter tensor Qij as well as electric potential Φ are obtained. Electric potential

and nematic order parameter tensor are alternatively computed, until converged to stable or

metastable solution. Mesh resolution is varied to satisfy minimum free energy per volume.

An absolute minimum in the free energy per volume corresponds to the equilibrium state.

The set of coupled material differential equations is solved numerically by using an explicit

Euler finite difference algorithm on a cubic mesh.

Figure 6. Electric potential in blue phases induced by flexo- and order electric effect. a) Blue phase; b) blue
phase II; In the middle electric potential in blue phases (high - black, low - yellow) is represented. Negative
electric potential is induced in regions around defect lines defects (green isosurfaces) and positive around
double twist cylinders (red isosurfaces). Cores of cylinders are drawn in blue, while defect lines are drawn
as white isosurfaces. High flexoelectric constant of 50 pC and free charge density of c = 1030 ions m−3 are
taken [2].

Since blue phases possess a crystal like property of unit cell periodicity, the electric poten-

tial is also periodic. Negative electric potential wraps around nematic disclinations. Using

10 Matrika 6 (2019) 1



“Matic Petric Matrika revised final” — 2019/4/11 — 12:39 — page 11 — #11

Effects of flexoelectricity in liquid crystal blue phases

flexoelectric material could help gather charged particles inside defect lines. Positive elec-

tric potential, on the other hand, wraps around double twist cylinders and forms long thick

regions of high electric potential. Assuming high enough mobility of electrons or ions blue

phases could form ordered structure of nanowires.

Figure 7. Top view and cross section of a nanowire (minimum of electric potential) on the left and average
of electric potential when going from top to bottom of basic cube [2].

5. Conclusion

Blue phases have matured, with recent advances in their construction, from exotic to regu-

lar stable phases in a chiral liquid crystal. Their structure can be undestood by combining

specific tools used in physics, from the Landau-de Gennes theory, to the theory of defects.

Flexoelectricity and order electricity must also be taken into account when describing blue

phases. In some cases said effects further stabilize/destabilize the structure with the help of

free ions. There is more insight yet to be gained in further focusing on the effect of free ions

that amplifies the effect of flexoelectricity.

Blue phases have also been proven of being applicative, especially because of their optical

properties. These properties can further be controlled via external electric field, and taken

advantage of to innovate liquid crystal displays. Apart from that, the new insight of possible

application of blue phases for micro transport as a consequence of flexoelectric micro-channels

should be further examined theoretically as well as experimentally. Having a conducting wire

analog in a liquid sure sounds interesting.
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