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SOLITONSKI SNOVNI VALOVI V BOSE-EINSTEINOVIH KONDENZATIH
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Članek obravnava solitonske snovne valove v Bose-Einsteinovih kondenzatih. Na začetku teoretično opǐse obna-
šanje kondenzata z nelinearno enačbo Gross-Pitaevskega, ki vsebuje približek povprečnega polja, in razǐsče pogoje,
pod katerimi je kondenzat nestabilen. V enodimenzionalni limiti pokaže soliton kot točno rešitev omenjene enačbe.
V eksperimentih s hladnimi atomi, kjer geometrija ni zares enodimenzionalna in nastopajo še zunanji potenciali, se
osnovne lastnosti solitonov spremenijo, pride pa tudi do povsem novih pojavov, zaradi česar se uporablja besedna
zveza solitonski val namesto soliton. Drugi del članka se osredotoči na nastajanje posameznih in večkratnih stabilnih
solitonskih valov v eksperimentih ter njihove trke. V zaključku so omenjeni še nekateri primeri uporabe pojava.

SOLITARY MATTER-WAVES IN BOSE-EINSTEIN CONDENSATES

This article discusses solitary matter-waves in Bose-Einstein condensates, a nonlinear phenomenon that exhibits
soliton-like properties. It starts with the theoretical description of condensate behaviour by the mean-field Gross-
Pitaevskii equation, explores its collapse instabilities and shows the exact soliton solution in the 1D limit. In the
experiments, the residual three-dimensionality and external potentials alter the fundamental soliton properties and
introduce interesting new effects. The second part of the article focuses on the experimental formation of single and
multiple stable solitary waves and solitary wave collisions. In conclusion some examples of possible applications are
given.

1. Introduction

Solitons are non-dispersive localized wavepackets, well-known especially for appearing in shallow

water and optics. They appear as a solution to equations in several one-dimensional (1D) systems,

and are characterized by maintaining shape and amplitude while propagating and interacting with

other solitons. This is achieved when nonlinearity of the medium cancels the effects of dispersion.

The term soliton is usually reserved for solutions of partial differential equations describing physical

systems which are exactly solvable (i.e. have integrable equations).

The first recorded observation of a soliton was in 1834 in a canal with shallow water. It was

described as fast, well-defined and travelling without a change of shape or speed. In the following

years the experiments in a wave tank have been made, demonstrating the solitons passing through

one another unchanged. In 1895, the Korteweg–de Vries equation was derived, describing the waves

on shallow water with an exact soliton solution that could describe said experiments. Nowadays

solitons are best known in nonlinear optics, especially temporal solitons, whose existence was pro-

posed in 1973. Soliton research has been conducted in diverse fields with solitons being suggested

to describe proteins, DNA, plasma waves and so on [1].

In this article a similar phenomenon - solitary matter-waves - is presented. It occurs in

Bose-Einstein condensates (BECs) of ultracold atomic gases. BEC is a state of matter in which a

macroscopic number of atoms share the same quantum wavefunction, implying that they behave

coherently as a single matter-wave. Experiments can only approach the 1D limit needed for realiza-

tion of the true solitons, but solitary waves as their 3D analogues maintain a lot of key properties,

such as propagation without dispersion on macroscopic distances. The nonlinearity which counte-

racts dispersion comes from interatomic interactions, which can be repulsive or attractive, the latter

leading to solitary waves.

Solitary waves manifest in condensates as localised density peaks and were experimentally first

realised in 2002 [2]. There is still ongoing research on this topic, since the experimental observa-

tions of solitary waves triggered a lot of theoretical interest which in turn motivated a handful of
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experiments. A multitude of interesting questions have appeared and since cold atom systems can

be very precisely manipulated, many ideas presented in theoretical proposals can be experimentally

realised. In this article some elementary tools for the theoretical description of such systems will be

presented, followed by an interpretation of solitary waves formation and collision experiments.

2. Theoretical description

Bose-Einstein condensate is a state of matter of a low density atomic gas, made of bosons, cooled

to temperatures close to the absolute zero. As we know, there is no limit to how many bosons can

occupy a certain quantum state, so under appropriate conditions a large fraction of the atoms goes

into the ground state of the system. In the weak interatomic interactions limit, the particles in a

BEC all occupy the same quantum state, therefore it is assumed that they can be described by a

single wavefunction, and so they behave like a single coherent matter-wave.

2.1 The Gross-Pitaevskii equation

The wavefunction of a BEC can generally be described by the Gross-Pitaevskii equation (GPE),

which has a form of nonlinear Schrödinger equation (NLS). It is assumed that only the ground

state is occupied and that the gas has low density and weak interparticle interactions, which can

be described by the mean-field approximation [3].

The standard many-body Hamiltonian for interacting bosons in the external potential Vext(~r),

written in the second quantisation with the boson field operators Ψ(~r) and Ψ†(~r), is

H =

∫
d3~r

[
~2

2m
∇Ψ†(~r)∇Ψ(~r) + Vext(~r)Ψ

†(~r)Ψ(~r) +
1

2

∫
d3~r′Ψ†(~r)Ψ†(~r′)V (~r − ~r′)Ψ(~r′)Ψ(~r)

]
,

where m is the atomic mass. Using the contact interatomic interaction

V (~r − ~r′) = g δ(~r − ~r′)

and the mean-field approximation we arrive to the total energy functional

E [ψ(~r)] =

∫
d3~r

[
~2

2m
|∇ψ(~r)|2 + Vext(~r) |ψ(~r)|2 +

1

2
g |ψ(~r)|4

]
.

Here, ψ(~r) is the macroscopic wavefunction of the condensate, |ψ(~r)|2 is the atomic density and the

normalization is ∫
|ψ(~r)|2d3~r = N,

where N is the number of atoms in a BEC. We then minimize the energy with respect to variations

in ψ(~r) to get the time-independent GPE or minimize the action for the time-dependent version of

the Gross-Pitaevskii equation:

i~
∂

∂t
ψ(~r, t) = − ~2

2m
∇2ψ(~r, t) + Vext(~r)ψ(~r, t) + g |ψ(~r, t)|2ψ(~r, t).

The coupling constant g is known from the scattering theory as g = 4π~2
m as, where as is the scattering

length. This parameter describes the strength of atomic interaction, which is repulsive for as > 0

and attractive for as < 0. Since BECs have a very low density, the scattering length is much

smaller than the interparticle distances.

The wavefunction can be written as

ψ(~r, t) = |ψ(~r, t)| ei φ(~r,t),

where φ(~r, t) is the condensate phase.
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2.2 The stability of the condensate

It is instructive to consider the conditions for the stability and collapse of BECs. The simplest way

to see this is by taking the above equations for the number of atoms and the energy, generalising

them for D dimensions:

N =

∫
|ψ(~r)|2dD~r, E =

∫
dD~r

[
~2

2m
|∇ψ(~r)|2 + Vext(~r) |ψ(~r)|2 +

1

2
gD |ψ(~r)|4

]
and perform a dimensional analysis [4]. We assume that L is the typical size of a BEC and estimate

the wavefunction from the first expression as |ψ| ∼ ( N
LD )1/2. Furthermore, we take the attractive

atomic interactions (gD = −|gD|) and a harmonic trap for potential (Vext = 1
2mω

2
rr

2, where ωr is a

radial trap frequency). Hence the energy can be written as

E ∼ LD
 ~2

2m

(
N1/2

LD/2+1

)2

+
1

2
mω2

r L
2 N

LD
− 1

2
|gD|

(
N

LD

)2
 = ckin

N

L2
+ cpotNL

2 − cint
N2

LD
,

where ckin, cpot and cint are positive constants.

2.2.1 The 1D condensate

In one dimension, an expression for the energy is

E ∼ ckin
N

L2
+ cpotNL

2 − cint
N2

L
.

The kinetic energy, which behaves as 1/L2, prevails for small condensate sizes, whereas the potential

energy (∼ L2) is dominant for big L, hence the energy will have a minimum at a finite condensate

size, as we can see in Figure 1. That localized state is a 1D matter-wave soliton.
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Figure 1. The 1D BEC has a stable localised state for the finite sizes.

It is worth noting that the interaction term is scaled by N2 and the others only by N . For a

larger number of atoms, the stable BEC size gets increasingly smaller, since the interaction term

moves the minimum to the left. Intuitively, the same thing holds for bigger cint due to the stronger

interaction.

The kinetic energy that stabilizes the system comes from the ground state (also called

zero-point) energy of the quantum mechanical system and originates in the Heisenberg uncertainty

principle. The nonzero ground state energy is due to the trapping potential, which localizes the

atoms and thus increases their kinetic energy [5]. Remarkably, the trap not only prevents the BEC

from expanding, but also from collapsing.
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2.2.2 The 2D condensate

In two dimensions the rearranged expression for the energy is

E ∼ N(ckin −N cint)

L2
+ cpotNL

2.
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Figure 2. If the number of atoms is small enough and the interaction weak, the 2D BEC has a stable size (left),
otherwise a minimum appears at the origin and the collapse occurs (right).

For the stable solutions, the first term has to be positive, otherwise we get a global minimum at

the origin (Figure 2), which means the collapse of the BEC [6]. Consequently there exists a critical

number of atoms Nc under which the condensate is stable, and it is inversely proportional to the

strength of interaction.

2.2.3 The 3D condensate

Lastly, in the three dimensional systems the energy is estimated as

E ∼ ckin
N

L2
+ cpotNL

2 − cint
N2

L3
.

Here the interaction term dominates for small sizes, so there is always a global minimum at the

origin, but it is possible to generate a metastable state of finite size. For the existence of such a state

a balance of all three terms is needed, which can be conveniently characterized with a dimensionless

interaction parameter k = N |as|/ar, where ar =
√
~/mωr is a radial harmonic oscillator length

of the trap [6]. The collapse occurs when k exceeds a critical value kc, that is when the number of

atoms is too large or the interaction is too strong, similar as in the 2D case (Figure 3). A numerical

value for kc, obtained experimentally, with numerical simulations or using a Gaussian ansatz for the

wavefunction, is reported to be around 0.5 [5].

Note that the presence of the external trapping potential is crucial for the existence of stable

states in a BEC, as mentioned earlier. An untrapped BEC with attractive interactions is always

unstable to collapse [5].

2.3 The 1D limit of the GPE

Mathematically, the integrability of an equation of motion corresponds to the ability of exact

soliton solutions to survive mutual collisions unchanged. The Gross-Pitaevskii equation is integrable

in the 1D limit with Vext = 0, which means that the amplitudes and velocities of the solitons are

conserved [7].
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Figure 3. The 3D BEC has a metastable size if the number of atoms is small enough and the interaction weak (left),
otherwise a minimum appears at the origin and the collapse occurs (right).

For the derivation of a quasi-1D GPE in the strong transverse confinement we assume the form

of a wavefunction in cylindrical coordinates (r, ϕ, z) to be

ψ(~r, t) = ψ(z, t) exp

(
− r2

2a2r

)
,

where ar =
√
~/mωr is the radial harmonic oscillator length of the trap, as mentioned above. This

ansatz is plugged into the original 3D GPE and the equation is integrated over r and ϕ to obtain

the equation for ψ(z, t). This wavefunction is normalized as∫
|ψ(z, t)|2dz = N

and therefore the interaction term in the equation is changed. The external potential Vext(~r) is

written as

Vext(~r) =
1

2
mω2

rr
2 + Vext(z)

and its first term gives us constant energy shift in the 1D Gross-Pitaevskii equation:

i~
∂

∂t
ψ(z, t) =

[
− ~2

2m

∂2

∂z2
+ Vext(z) + ~ωr + g1D |ψ(z, t)|2

]
ψ(z, t),

where g1D = 2 as ωr ~ [8].

2.3.1 Solitonic solution and stability

If we set Vext(z) = 0 and neglect the constant energy shift ~ωr, the 1D GPE has a well-known exact

soliton solution

ψ(z, t) =

√
|as|
2

N

ar
exp

[
i
mv

~
z − i

~

(
mv2

2
− ~2κ2

2m

)
t

]
1

coshκ (z − vt)
,

where

κ =
|as|N
a2r

=
k

ar

is an inverse width of the soliton and v its velocity [9]. We get this expression for the parameter κ

after plugging the ansatz in the equation. The solution is correctly normalized to N .

Since we know that kc ≈ 0.5 and k < kc for the stable condensate, we can write κ−1 � ar.

Therefore, in the 1D limit the longitudinal size of the soliton is much bigger that its radial size

which corresponds to the harmonic oscillator length of the radial trap.
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Theoretically, 1D solutions are always stable, as we have seen in section 2.2.1. However, as the

interaction parameter k increases (the number of atoms grows or the interaction gets stronger), the

minimum in Figure 1 moves to the left and the longitudinal size of the soliton κ−1 decreases. When

the radial and longitudinal sizes become comparable, the soliton is in the 3D regime rather than

1D and is unstable to collapse [5]. So there is no guaranteed stability for solitons in the quasi-1D

experimental configurations - in reality only the metastable states can be achieved.

3. Behaviour of the solitary waves in experiments

In the experiments, use of the external potentials breaks the integrability discussed above, and

only the quasi-1D systems can be realized, so we get solitary waves (SWs) instead of the true

solitons, as mentioned in the introduction. The SW experiments presented in this article are per-

formed in the elongated BECs with a strong external confinement in two transversal dimensions. In

the axial dimension there is usually a weak harmonic trap with the potential Vext(z) = ±1
2mω

2
zz

2,

which, depending on a sign, is called a trapping or an anti-trapping potential.

3.1 Formation of one or multiple SWs

In this section the formation of solitary waves in a BEC is described. The mechanism of atom

cooling and trapping to create and manipulate BECs is described elsewhere [10], as well as physics

behind the tuning of the atomic interactions [5]. The creation of a SW is confirmed by releasing it

into a weak anti-trapping potential and observing its non-dispersive propagation over macroscopic

distances, as seen in Figure 4.

Figure 4. The propagation of a SW in an anti-trapping potential without dispersion over the distance of 2.9 mm in
170 ms. Courtesy of the Cold atom laboratory at the Jožef Stefan Institute.

Firstly, the BEC with repulsive interactions is created in an elongated harmonic trap with strong

radial confinement (or created in an isotropic trap which is then transformed into elongated one

[2]). In the next step the scattering length is tuned to a small negative value. At this point the

number of atoms in the condensate exceeds the critical number, so the condensate becomes unstable

to collapse. An actual mechanism of collapse are the three-body atomic losses [6], which lower
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the number of atoms in the BEC. During the collapse the interparticle distances in the condensate

are decreasing, which enables three atoms to come close to each other. Then two of them can form

a molecule and the third atom receives the released energy as kinetic energy. In this process, all

three atoms are lost, since the energy is larger than the typical trap depth. Due to the primary

collapse, eventually the number of atoms falls under the critical number and the condensate is

stabilized, forming a SW. As an intuitive consequence of this process, the SWs generally contain

about a critical number of atoms and are close to the 3D geometry [5].

Another possible outcome of a BEC collapse is a so-called soliton train, containing multiple

SWs, which was first observed in 2002 [11]. In this case, the number of atoms remaining in the

condensate is higher than the critical number, but they are divided into the multiple distinct SWs,

each with the number of atoms just under Nc (example in Figure 5). Experiments show that these

SWs are remarkably stable, persisting for many cycles of oscillation in a harmonic trap despite

being near the threshold for collapse [11]. This stability is a consequence of a relative phase π

between the SWs. As explained later in the article, the dynamics of interactions between SWs

are determined by their relative phase ∆φ, which is the difference between the condensate phases,

defined in the beginning of this article. For ∆φ = 0, a coherent overlap of solitons can occur,

resulting in a secondary collapse if the number of atoms temporarily exceeds the critical one [12].

The soliton trains being stable therefore implies the interaction between the SWs with the relative

phase π, which ensures that the conditions for the secondary collapse are never met.

Figure 5. The soliton train. Courtesy of the Cold atom laboratory at the Jožef Stefan Institute.

The mechanism responsible for the soliton train formation is the modulational instability

(MI). As the scattering length in a BEC is rapidly changed from positive to negative, the MI causes

the exponential growth of small density fluctuations into density modulations in the condensate.

Atoms move into the spots with increased density and evolve into solitons [13]. There were two

theories regarding how the π-phase differences are formed, ensuring the stability of soliton trains.

Firstly, it was proposed that quantum fluctuations seed the MI and during the collapse imprint the

condensate with a phase structure, restricting phase difference to values close to π [5]. Another idea

was that the perturbations for MI originate in self-interference of the condensate. In this case it

was understood that the SWs are created with arbitrary phases and only after series of secondary

collapses, induced by collisions of the in-phase (∆φ = 0) SWs, they settle into the stable out-of-phase

configuration [12].

In 2017, it was concluded [13] that the modulational instability is driven by the noise, but it

is not yet known whether it is quantum or not. For small |as| (corresponding to the larger number

of atoms in individual SWs), it was surprisingly discovered that neither primary nor secondary

collapses have occurred during the soliton train formation. Such SWs were already out-of-phase

during the formation of the soliton train. For larger |as| though, both primary and secondary

collapses were present, which is why the initial relative phase could not be observed.

3.2 Collisions of the two SWs

The defining property of the true solitons is, apart from being non-dispersive, their ability to pass

through one another with an unchanged velocity, amplitude or shape, but possibly with an

altered trajectory due to a phase shift [14]. The solitary waves however, although created in a
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quasi-1D geometry, are often created close to the transition between 1D and 3D due to the nature

of experimental process, described in the previous section. As a consequence, the non-solitonic

behaviour is manifested in the SW collisions. They are a complex phenomenon with properties

depending heavily on the interaction parameter k, the velocity of SWs and the relative phase

between them.

As shown in one of the several theoretical analyses [15] and sole experimental work [14], the

relative phase ∆φ is crucial for the collisional dynamics. For ∆φ = 0 or an in-phase collision, the

wavepackets overlap and form a density peak, which does not appear for the out-of-phase ∆φ = π,

as can be seen on Figure 6.

Figure 6. Phase-dependent collisions of the SWs in a harmonic trap. An in-phase collision has a density peak at
the centre of mass (left), an out-of-phase collision does not (right). Adapted from [14].

In the density peak, distinctive for the ∆φ = 0 case, the number of atoms can increase above

the threshold for collapse, causing the collapse instability. That causes the apparent annihilation of

an in-phase SW pair or reduction of the atom number in the SWs, if only partial collapses occur.

On the other hand, the SW pairs with ∆φ = π are remarkably stable and survive many oscillations

in a trap [14]. That is why a relative phase of π between the SWs is believed to be the reason for

the stability of soliton trains, as stated earlier. Those collisions are generally stable even though the

number of atoms in both SWs together exceeds the critical number. The reasons for such behavior

are complex and are not fully understood yet, as discussed in the following.

The result of the SWs overlap is a wave interference pattern, which can be nicely seen in

Figure 7, the result of numerical simulations of the 3D GPE. Figures (b)(ii) and (c)(ii) seem to

match well with Figure 6, since a density peak or lack thereof is clearly recognizable. Additionally,

the effect of the SW velocity can be observed. The number of collisional interference fringes increases

with the velocity and is, though hard to see on the upper figures, always odd for ∆φ = 0 and even

for ∆φ = π. The lower figures also follow this rule with 1 or 0 fringe, respectively. On the figure 7(a)

it is also shown how the stability of SWs with different relative phases depends on the interaction

parameter k - for the small enough velocities, the collisions with ∆φ = π are unsurprisingly much

more stable.

However, as the velocity increases, stability depends less and less on ∆φ and approaches the

critical value kc for an isolated SW. To explain this, it was proposed that there is a characteristic
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Figure 7. (a) The phase space for the stability of SWs, colliding in a waveguide without axial potential. Stability
depends on the interaction parameter k and the velocity of SWs vi. (b)-(c) Evolution of the SW collisions for the
different parameters with clearly visible interference fringes. Adapted from [15].

time tcol for the collapse to occur [15]. If the time tint of the two SWs overlapping is much

shorter that tcol, there is not enough time for the collapse to happen and the SWs pass one another

unchanged. The interaction time tint is inversely proportional to the velocity and that is why for the

large velocities stability is easily achieved. There is clearly no such limitation for the interference,

so it appears for the larger velocities as well.

A natural question regarding Figure 7(c)(ii) is whether that is just an interference pattern looking

like a reflection or do the SWs actually repel. The interpretation in [11] and [16] is that ∆φ = π

prevents overlapping with the effective repulsive force such that the SWs rebound rather than pass

through each other. It is known that in the 1D limit, the force between two solitons depending on

∆φ changes continuously from attractive to repulsive [15]. This transition can be seen in Figure

8(a), which does the same as 7(b) and 7(c), but for the 1D NLS equation.

Figure 8. (a) Numerical simulation of the 1D NLS resulting in the phase dependent soliton interactions. (b) Collision
of the SWs with an atom number ratio of 2:1. Adapted from [17] and [14].

However, in Figure 8(b) there is a convincing experiment that offers proof of the SWs passing

through one another with ∆φ = π. The picture shows trajectories of two different SWs, whose

relative phase is π, since no density peak appears between the SWs during the collision. The authors

argue that the interference pattern of two passing solitons with ∆φ = π only gives the appearance

of reflection. The possibility of SWs exchanging particles during collisions was found in [15], but

ruled out as an explanation since that happens at much lower velocities.
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Finally, let’s go back to the altered trajectories mentioned in the beginning of this section.

They can be seen in Figure 8(a) - the incident trajectories are not aligned with the ones that go out,

which is one of the general differences between the nonlinear and linear interactions. Interestingly,

this effect was measured in [14] - they observed the SWs oscillating with a frequency higher than

the trap frequency ωz, which is the consequence of a such trajectory jump in a trap. An intuitive

explanation for such behaviour was given: since interaction among the atoms is attractive, they

accelerate the SWs as they get close to one another and decelerate them back to the original

velocity while they are moving away. Hence the SWs need less time to complete the movement in

the trap and thus have higher frequency. The frequency shift was found to be independent of ∆φ,

indicating that the soliton trajectories are in fact unrelated to the phase-dependent interaction, as

previously described interpretation would suggest.

4. Conclusion

The emphasis of this article was on the stable configurations of the Bose-Einstein condensates. It

started with a discussion of the general stability of BECs in a trap, continued with the stability of a

single solitary matter-wave, then multiple SWs in a soliton train, and lastly the stability of two SWs

during multiple collisions. Being able to create states that are stable and also free from dispersion

is a huge advantage, since those properties are promising for a wide range of applications, such

as atom interferometry, atom sensors for high-precision measurements and quantum-information

processing [5]. It was proposed that a pulsed atomic soliton laser could be made with a simple

adaptation of the existing setups, in which all collapses could be avoided [18]. To conclude, solitary

matter-waves in Bose-Einstein condensates are a fascinating topic with a lot of open experimental

challenges, potentially leading to important advances in the quantum technology.
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