KRITIČNA MASA

LUKA MEDIC

Fakulteta za matematiko in fiziko Univerza v Ljubljani

Predstavljena je difuzijska aproksimacija in izpeljava Fickovega zakona za nevtrone v fisijskem materialu. V nadaljevanju sledi izračun kritične velikosti kocke v vakuumu in plašču (reflektorju) s kocki enakimi difuzijskimi lastnostmi. Sledi primerjava in uskladitev rezultatov difuzijske aproksimacije z rezultati iterativne Monte Carlo metode. Na koncu so prikazani rezultati iterativne Monte Carlo metode za primer urana 235 U, ki kažejo večja odstopanja z rezultati difuzijske aproksimacije.

CRITICAL MASS

Diffusion approximation and derivation of Fick's law for neutrons in fissile medium are presented. Critical dimensions of cube in vacuum and tamper (reflector) with same diffusion coefficient are calculated. Results are compared and verified with iterative Monte Carlo method. Finally, criticality of uranium ²³⁵U cube is determined by iterative Monte Carlo method, which shows larger deviations from the results of diffusion approximation.

1. Uvod

Verižna cepitev jeder temelji na difuziji nevtronov in njihovi interakciji z radioaktivnimi izotopi, pri kateri se sproščajo novi nevtroni. Hkrati se pri tem procesu sprosti velika količina energije (okoli 200 MeV na cepitev), ki jo v nadzorovanem okolju izkoriščamo za pridobivanje električne energije v jedrskih elektrarnah.

V prvem delu je predstavljena izpeljava *enogrupne difuzijske aproksimacije*, v okviru te pa je v nadaljevanju izračunana kritična dimenzija oz. masa kocke urana ²³⁵U naravne gostote. Obravnavana sta dva primera okoliškega medija: vakuum in plašč (reflektor) z enako difuzijsko konstanto.

V drugem delu so rezultati iz analitične obravnave primerjani s stohastično metodo *Monte Carlo* (MC). Rezultati obeh metod so najprej z ustrezno izbiro parametrov med seboj primerjani in usklajeni. Na koncu so predstavljeni rezultati MC za izbrane podatke urana ²³⁵U, ki pa znatno odstopajo od analitičnih rezultatov.

2. Difuzijska aproksimacija

Difuzijsko aproksimacijo začnimo z izpeljavo *Fick-ovega zakona* za gostoto številskega toka nevtronov (*neutron current density*) [1]

$$\mathbf{J} = -D\nabla N,\tag{1}$$

kjer sta D difuzijska konstanta in N številska gostota nevtronov. Izračunajmo gostoto toka po komponentah $\mathbf{J} = (J_x, J_y, J_z)$, kjer ima vsaka izmed komponent prispevek toka v pozitivni in negativni smeri, torej

$$J_i = J_i^+ - J_i^-.$$
(2)

Omejimo se le na izračun J_z^- , analogno pa dobimo še prispevek J_z^+ in preostali komponenti J_x in J_y . V xy-ravnini imejmo površino dS_z , skozi katero se sipljejo nevtroni iz zgornjega dela polprostora z > 0 (slika 1). Število nevtronov, ki se na časovno enoto siplje iz volumna dV je

$$\frac{\mathrm{d}^2 N_s}{\mathrm{d}t} = \Sigma_s \phi\left(\mathbf{r}\right) \mathrm{d}V,\tag{3}$$

kjer sta Σ_s sipalni makroskopski presek¹ in $\phi(\mathbf{r})$ skalarna gostota toka (*neutron flux density*)², za katero velja $\phi = Nv$, kjer je v hitrost nevtronov. Za lažjo obravnavo predpostavimo, da se nevtroni *sipljejo izotropno v laboratorijskem sistemu* ($\bar{\mu} = \overline{\cos \theta} = 0$). Tedaj je delež nevtronov, ki je usmerjen proti površini d S_z , sorazmeren s prostorskim kotom, ki ga zaseda površina d S_z v oddaljenosti r od sipanih nevtronov

$$\frac{\mathrm{d}\Omega}{4\pi} = \frac{\cos\theta\,\mathrm{d}S_z}{4\pi r^2},\tag{4}$$

kjer je s θ označen kot med normalo dS_z in smerjo vpadnih nevtronov iz volumna dV. Na poti od dV do površine dS_z se nevtroni lahko ponovno sipljejo (Σ_s) ali absorbirajo (Σ_a), zato je verjetnost, da površino dS_z dosežejo, zmanjšana za eksponent $e^{-\Sigma_t r}$, kjer je $\Sigma_t = \Sigma_s + \Sigma_a$ totalni makroskopski presek. Z združitvijo enačb (3) in (4) izračunamo J_z^- kot integral po zgornjem polprostoru (z > 0):

Slika 1. Nevtroni se iz volumna dV sipljejo skozi površino dS_z , pri čemer se dV nahaja na oddaljenosti r in pod kotom θ glede na normalo dS_z . Efektivni prostorski kot, ki ga dS_z zavzame je enak $\frac{\cos \theta dS_z}{4\pi r^2}$.

$$J_{z}^{-} = \int \frac{\mathrm{d}^{3}N}{\mathrm{d}t\,\mathrm{d}V\,\mathrm{d}S_{z}}\,\mathrm{d}V = \int e^{-\Sigma_{t}r}\,\frac{\cos\theta}{4\pi r^{2}}\cdot\frac{\mathrm{d}^{2}N_{s}}{\mathrm{d}t\,\mathrm{d}V}\,\mathrm{d}V = \int_{0}^{\infty}\int_{0}^{\frac{\pi}{2}}\int_{0}^{2\pi}e^{-\Sigma_{t}r}\frac{\cos\theta}{4\pi r^{2}}\Sigma_{s}\phi\left(\mathbf{r}\right)r^{2}\sin\theta\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi.$$
 (5)

Predpostavimo, da je spreminjanje $\phi(\mathbf{r})$ počasno v primerjavi s povprečno prosto potjo $\lambda_t = 1/\Sigma_t$. Tedaj lahko uporabimo Taylorjev razvoj za skalarno gostoto toka

$$\phi(\mathbf{r}) = \phi + r\sin\theta\cos\varphi\frac{\partial\phi}{\partial x} + r\sin\theta\sin\varphi\frac{\partial\phi}{\partial y} + r\cos\theta\frac{\partial\phi}{\partial z} + \dots$$
(6)

Razvoj (6) vstavimo v integral (5) in po integraciji dobimo

$$J_z^- = \frac{1}{4} \frac{\Sigma_s}{\Sigma_t} \phi + \frac{1}{6} \frac{\Sigma_s}{\Sigma_t^2} \frac{\partial \phi}{\partial z}.$$
(7)

Podobno dobimo še z integracijo po spodnjem polprostoru (z < 0)

$$J_z^+ = \frac{1}{4} \frac{\Sigma_s}{\Sigma_t} \phi - \frac{1}{6} \frac{\Sigma_s}{\Sigma_t^2} \frac{\partial \phi}{\partial z}.$$
(8)

Celotna gostota številskega toka nevtronov v z-smeri je tedaj

$$J_z = J_z^+ - J_z^- = -\frac{1}{3} \frac{\Sigma_s}{\Sigma_t^2} \frac{\partial \phi}{\partial z},\tag{9}$$

od koder sledi vektorska oblika

$$\mathbf{J} = -D\nabla N = -\frac{1}{3} \frac{\Sigma_s}{\Sigma_t^2} \nabla \phi = -\frac{1}{3} \frac{\Sigma_s}{\Sigma_t^2} v \nabla N.$$
(10)

Izpeljali smo Fick-ov zakon in difuzijsko konstanto D, za katero velja

$$D = \frac{1}{3} \frac{\Sigma_s}{\Sigma_t^2} v. \ ^3 \tag{11}$$

¹Makroskopski preseki Σ so povezani z mikroskopskimi preseki σ z zvezo $\Sigma = \sigma n$, kjer je n številska gostota atomov v snovi. Lažje predstavljiva količina je povprečna prosta pot, za katero velja $\lambda = \Sigma^{-1}$.

²Razliko med **J** in ϕ si lahko predstavljamo na sledeč način: vektorska količina predstavlja makroskopski tok delcev in je neposeredno povezana z difuzijo in difuzijsko konstanto D, skalarna količina pa predstavlja mikroskopske fluktuacije gibanja delcev, ki so pomembne za obravnavo interakcij z atomi (reakcijska hitrost) [2].

³V literaturi navadno najdemo zvezo v obliki $D = \frac{v}{3\Sigma_{tr}} = \frac{\lambda_{tr}v}{3}$, kjer je $\Sigma_{tr} = \Sigma_t - \bar{\mu}\Sigma_s$ transportni sipalni presek in λ_{tr} srednja transportna razdalja. Zveza sledi iz približka anizotropnega sipanja, kjer predpostavimo šibko absorpcijo, torej $\Sigma_a \ll \Sigma_s$.

Difuzijo prostih nevtronov s številsko gostot
o ${\cal N}$ opišemo z difuzijsko enačbo

$$\frac{\partial N}{\partial t} = -\nabla \cdot \mathbf{J} - \Sigma_a \phi + S = D\nabla^2 N - \Sigma_a v N + S, \qquad (12)$$

kjer smo v enačbi dodali absorpcijski člen $\Sigma_a \phi$ in izvore nevtronov S. Imejmo sistem brez zunanjih izvorov, tako da k izvorom S prispevajo le fisije v cepljivem materialu, za katere velja

$$S = \nu \Sigma_f \phi, \tag{13}$$

kjer sta ν povprečno število nastalih nevtronov in Σ_f fisijski makroskopski presek. Za lažjo obravnavo predpostavimo še, da vsak absorbiran nevtron povzroči fisijo cepljivega jedra, torej sta absorpcijski in fisijski makroskopski presek enaka ($\Sigma_a = \Sigma_f$). V tem približku se pri vsaki fisijski interakciji najprej prost nevtron porabi za nastanek nestabilnega urana ²³⁶U, ki razpade v približno $10^{-16} s$, nato pa nastaneta lažja delca in ν prostih nevtronov. **Tabela 1.** Zbrani podatki za uran ²³⁵U. Namesto makroskopskih presekov Σ so navedene povprečne proste poti λ , kjer med obema količinama velja zveza $\lambda = \Sigma^{-1}$. Povzeto iz [3] (str. 56).

količina	enote	$^{235}\mathrm{U}$
А	g/mol	$235,\!04$
ho	$ m g/cm^3$	18,71
σ_{f}	bn	$1,\!235$
σ_s	bn	$4,\!566$
ν	_	$2,\!637$
n	$10^{22} {\rm ~cm^{-3}}$	4,794
λ_{f}	cm	$16,\!89$
λ_s	cm	$4,\!57$
λ_t	cm	$3,\!60$
au	$10^{-9} {\rm s}$	$8,\!635$
d	cm	$4,\!09$

Ker imamo opravka s fisijskim materialom, moramo v izpeljavi difuzijske konstante D, natančneje v enačbi (3), nadomestiti $\Sigma_s \to \Sigma_s + \nu \Sigma_f$, saj tudi novonastali nevtroni prispevajo k toku delcev skozi površino d S_z .

V strnjeni obliki sedaj zapišemo difuzijsko enačbo kot

$$\frac{\tau}{\nu - 1} \frac{\partial N}{\partial t} = d^2 \nabla^2 N + N, \qquad (14)$$

$$\tau = \frac{1}{v\Sigma_f},\tag{15}$$

$$d = \sqrt{\frac{\Sigma_s + \nu \Sigma_f}{3(\nu - 1)\Sigma_t^2 \Sigma_f}},$$
(16)

kjer smo vpeljali karakterističen čas τ in razdaljo d. Opazimo, da hitrost nevtronov v ne nastopa v izrazu za d, kar pomeni, da kritična velikost telesa ni odvisna od hitrosti nevtronov. Kljub temu velja omeniti, da sta Σ_f in ν odvisna od kinetične energije nevtronov, torej za realne sisteme obstaja odvisnost kritične velikosti od v, ki je v enogrupni difuzijski aproksimaciji⁴ nismo upoštevali.

3. Kritična velikost kocke

Z uvedbo novih spremenljivk $\tilde{t} = (\nu - 1) \frac{t}{\tau}$ in $\tilde{\mathbf{r}} = \frac{\mathbf{r}}{d}$ dobimo difuzijsko enačbo v brezdimenzijski obliki

$$\frac{\partial N}{\partial \tilde{t}} = \nabla_{\tilde{\mathbf{r}}}^2 N + N,\tag{17}$$

kjer sta $\frac{\partial}{\partial \tilde{t}}$ in $\nabla_{\tilde{\mathbf{r}}}$ operatorja odvajanja po skaliranih brezdimenzijskih spremenljivkah. V nadaljevanju bomo zaradi preprostosti izpuščali oznako ~, pri tem pa se bomo zavedali, da gre za brezdimenzijski količini t in \mathbf{r} .

⁴V realnih sistemih imajo nevtroni zvezen spekter hitrosti. V difuzijski aproksimaciji zvezen spekter nadomestimo z grupami, znotraj katerih imajo nevtroni enake kinetične energije. V reaktorskih izračunih se ponavadi uporablja šestgrupna difuzijska aproksimacija, v tem članku pa predpostavljamo, da imajo vsi nevtroni enake kinetične energije oz. pripadajo isti (eni) grupi.

S separacijo spremenljivk $N(\mathbf{r}, t) = N_r(\mathbf{r}) N_t(t)$ in deljenjem enačbe (17) z N dobimo

$$\frac{1}{N_t}\frac{\partial N_t}{\partial t} = \frac{\nabla^2 N_r}{N_r} + 1 = \mu,$$
(18)

kjer $\mu > 0$ predstavlja eksponentno rast števila nevtronov, nas pa bo zanimal le kritični primer t.j. $\mu = 0$. Za kocko kritične velikosti *a* (v brezdimenzijskih enotah $x_c = \frac{a}{d}$) s prostorsko porazdelitvijo nevtronov N_r rešujemo Helmholtzovo enačbo v kartezičnem koordinatnem sistemu s separacijo spremenljivk, od koder dobimo pogoj

$$k_x^2 + k_y^2 + k_z^2 = 1. (19)$$

Sledita primera kocke obdane z okoliškim medijem, to sta: kocka v vakuumu in v snovi z enako difuzijsko konstanto D.

3.1 Kocka v vakuumu

Za kocko kritične velikosti a, v vakuumu z difuzijsko konstanto $D_{\text{vakuum}} = \infty$, vzemimo na robu domene ∂D pogoj $N_r(\partial D) = 0$. V nadaljevanju bomo videli, da tak pogoj ni točen ter preveč restriktiven in ga zato imenujemo *superkritični pogoj*. Koordinatno izhodišče postavimo v oglišče kocke. Tedaj so rešitve, ki ustrezajo robnim pogojem, v brezdimenzijskih koordinatah oblike

$$N_r(x, y, z) \sim \sin k_x x \, \sin k_y y \, \sin k_z z,\tag{20}$$

$$k_x x_c = n\pi, \quad k_y x_c = m\pi, \quad k_z = l\pi, \quad n, l, m \in \mathbb{N}$$

$$\tag{21}$$

kjer smo ustrezno reskalirali velikost kocke $x_c = \frac{a}{d}$. Z upoštevanjem pogoja (19) dobimo

$$x_c = \pi \sqrt{n^2 + m^2 + l^2}.$$
 (22)

Zanima nas že najmanjša kritična velikost kocke, zato vzamemo rešitev n = m = l = 1. Izbira je pričakovana, saj ima rešitev največjo simetrijo izmed nabora ustreznih funkcij. Tako je

$$x_c = \pi\sqrt{3} \approx 5,44\tag{23}$$

ter superkritična velikost kocke $a = \pi \sqrt{3}d$ in superkritični volumen $V = \pi^3 3^{3/2} d^3$ (rezultati so zbrani na koncu v tabeli 4).

Kot smo že omenili je prej obravnavan robni pogoj za vakuum preveč restriktiven, zato si bomo ogledali še pravilneje zastavljen pogoj na robu. Vakuum predstavlja medij brez odbojnosti, torej na robu ni povratnega toka delcev $J^- = 0$. Iz enačbe (7) sledi v brezdimenzijskih koordinatah

$$\frac{\partial N_r}{\partial z}\Big|_{\partial D} = -\frac{3d}{2\lambda_t} N_r \Big|_{\partial D} = -\frac{d}{\lambda_{ex}} N_r \Big|_{\partial D}, \qquad (24)$$

kjer smo uvedli ekstrapolacijsko dolžino $\lambda_{ex} = \frac{2}{3}\lambda_t$.⁵ Za kritični primer vemo od prej, da je važna rešitev z največjo simetrijo (n = m = l = 1). Postavimo koordinatni sistem v središče kocke in iskana rešitev je oblike

$$N_r(x, y, z) \sim \cos kx \, \cos ky \, \cos kz, \quad k = 1/\sqrt{3}. \tag{25}$$

⁵Iz teorije transporta podrobnejša obravnava ploskega stika snovi z vakuumom da za ekstrapolacijsko dolžino $\lambda_{ex} = 0.7104 \lambda_t$. Ekstrapolacijska dolžina je odvisna tudi od ukrivljenosti površine, analitična obravnava pa je mogoča le za najpreprostejša geometrijska telesa, kot sta krogla in valj [4].

Iz (24) pri $x = \frac{x_c}{2}$ dobimo

$$x_c = 2\sqrt{3}\arctan\left(\sqrt{3}\frac{d}{\lambda_{ex}}\right) = 2\sqrt{3}\arctan\left(\frac{3}{2}\sqrt{3}\alpha\right) \approx 4,31,$$
 (26)

kjer $\alpha = \frac{d}{\lambda_t} \approx 1,136$ za ²³⁵U, kar je občutno manj od superkritične velikosti (23).

Kritična velikost kocke je primerljiva s povprečno prosto potjo in hitro izračunamo, da velja $a \approx 4.9 \lambda_t$. To dejstvo pa izpodbija predpostavko počasno spreminjajočega $\phi(\mathbf{r})$, torej ravoj (6) ni upravičen. Zaradi tega bomo v poglavju 4.2 videli neujemanje analitičnih rezultatov in rezultatov pridobljenih s simulacijami Monte Carlo.

3.2 Plašč z enako difuzijsko konstanto

V primeru neskončnega plašča (reflektor, *ang. tamper*) z difuzijsko konstanto, ki obdaja sredico, rešujemo problem z zlepkoma rešitev. V sredici vzemimo že znan nastavek

$$N_r^{\text{jedro}}(x, y, z) \sim \cos kx \, \cos ky \, \cos kz, \quad k = 1/\sqrt{3} \tag{27}$$

za plašč $N_r^{\text{plašč}}$ (snov, ki obdaja sredico) pa rešujemo *Laplaceovo enačbo*, kjer smo že predpostavili stacionarnost v času (pogoj za kritičnost)

$$\nabla^2 N_r^{\text{plašč}} = 0. \tag{28}$$

Robna pogoja na stiku med sredico in plaščem sta

$$N_r^{\text{jedro}}\Big|_{\partial D_{\text{jedro}}} = N_r^{\text{plašč}}\Big|_{\partial D_{\text{jedro}}}$$
 zveznost in (29)

$$D^{\text{jedro}} \nabla N_r^{\text{jedro}} \Big|_{\partial D_{\text{jedro}}} = D^{\text{plašč}} \nabla N_r^{\text{plašč}} \Big|_{\partial D_{\text{jedro}}} \quad \text{ohranitev toka.}$$
(30)

Na stiku plašča z okolico, npr. vakuum, bi lahko upoštevali (24), ker pa smo privzeli neskončen plašč velja

$$N_r^{\text{plašč}}\Big|_{\partial D_{\text{plašč}} \to \infty} \to 0.$$
(31)

Iz obravnave sferno simetričnega problema (v nadaljevanju poglavje 3.2.1), poznamo asimptotsko obnašanje

$$N_r^{\text{plašč}} \asymp \frac{1}{r}.$$
(32)

Rešitev za $N_r^{\text{plašč}}$ lahko zapišemo s pomočjo *Greenove funkcije* $G(\mathbf{r}, \mathbf{r}') = -\frac{1}{4\pi |\mathbf{r}-\mathbf{r}'|}$ in z upoštevanjem (29), (30) in (32), ki nam zagotovi, da gre prispevek $\partial D_{\text{plašč}} \to \infty$ proti 0, dobimo

$$N_{r}^{\text{plašč}}\left(\mathbf{r}\right) = \int_{\partial D_{\text{jedro}}} \left[N_{r}^{\text{jedro}}\left(\mathbf{r}'\right) \nabla' G\left(\mathbf{r},\mathbf{r}'\right) - \frac{D^{\text{jedro}}}{D^{\text{plašč}}} \nabla' N_{r}^{\text{jedro}}\left(\mathbf{r}'\right) G\left(\mathbf{r},\mathbf{r}'\right) \right] \cdot \mathrm{d}\mathbf{S},\tag{33}$$

kjer ima d**S** smer notranje normale kocke. Določiti želimo x_c , ki predstavlja velikost kocke, oz. nam določa integracijske ploskve $\partial D_{\text{jedro}}$. Porazdelitev $N_r^{\text{plašč}}$, ki je izražena z (33), zadošča *Laplaceovi* enačbi v plašču, ki obdaja kocko. Usklajenost med N_r^{jedro} in $\nabla N_r^{\text{jedro}}$ je določena z zveznostjo N_r na robu

$$N_r^{\text{plašč}}\left(\mathbf{r}\right) = N_r^{\text{jedro}}\left(\mathbf{r}\right), \quad \mathbf{r} \in \partial D_{\text{jedro}}.$$
 (34)

Matrika 5 (2018) 2

Koordinatni sistem smo postavili v središče kocke, izračunati pa želimo gostoto nevtronov zunaj kocke $N_r^{\text{plašč}}(\mathbf{r})$ pri $\mathbf{r} = (x_0, 0, 0)$, $x_0 > x_c/2$. Z upoštevanjem $D^{\text{jedro}} = D^{\text{plašč}}$ in simetrije kocke, se nam integral (33) poenostavi v

$$N_r^{\text{plašč}}(x_0; x_c) = \frac{1}{4\pi} \left[I_x\left(x_0, \frac{x_c}{2}\right) - I_x\left(x_0, -\frac{x_c}{2}\right) + 4I_z\left(x_0, \frac{x_c}{2}\right) \right],\tag{35}$$

kjer

$$I_{x}(x_{0},x) = \iint_{y,z \in [-x,x]} \left(\frac{\cos(kx)(x_{0}-x)}{R(x_{0},x,y,z)^{3}} + \frac{k\sin(kx)}{R(x_{0},x,y,z)} \right) \cos(ky) \cos(kz) \, \mathrm{d}y \, \mathrm{d}z,$$
(36)

$$I_{z}(x_{0},z) = \iint_{x,y\in[-z,z]} \left(\frac{\cos(kz)(-z)}{R(x_{0},x,y,z)^{3}} + \frac{k\sin(kz)}{R(x_{0},x,y,z)}\right)\cos(kx)\cos(ky)\,\mathrm{d}x\,\mathrm{d}y,\tag{37}$$

$$R(x_0, x, y, z) = \sqrt{(x_0 - x)^2 + y^2 + z^2}.$$
(38)

Integrala (36) in (37) nista preprosto analitično izračunljiva, zato si pomagamo z numerično integracijo. Parameter x_c določimo kot presek funkcij $N_r^{\text{jedro}}\left(\frac{x_c}{2}\right) = \cos\left(k\frac{x_c}{2}\right)$ in $N_r^{\text{plašč}}\left(x_0 \to \frac{x_c}{2}^+; x_c\right)$, kjer je z $\frac{x_c}{2}^+$ označena zgornja limita. Grafični prikaz preseka obeh funkcij je prikazan na sliki 2, kritična velikost kocke pa znaša $x_c \approx 2,59$. Rezultat lahko preverimo z izrisom porazdelitve N v smeri x_0 , ki mora biti zvezna in zvezno odvedljiva funkcija (slika 3).

Slika 2. Iskano kritično velikost kocke x_c določimo kot prvo presečišče funkcije $N_r^{\text{jedro}} = \cos \frac{kx_c}{2}$ in $N_r^{\text{plašč}}\left(\frac{x_c}{2}^+; x_c\right)$ (enačba (35)). Presečišče je pri $x_c = 2,59026\ldots$

Slika 3. Gostota nevtronov N se zvezno in zvezno odvedljivo nadaljuje v območje plašča za ustrezno izbrano kritično velikost $x_c \approx 2,59$. Razvidno je tudi asimptotsko obnašanje $\frac{1}{x}$.

3.2.1 Aproksimacija kritične velikosti kocke

Na koncu poglavja 3.2 smo s pomočjo numeričnega integriranja določili kritično velikost kocke x_c . Oglejmo si še primer za ocenitev kritične velikosti kocke x_c^{kocka} s pomočjo znanega rezultata za kroglo x_c^{krogla} . Na ta način se želimo izogniti numerični integraciji iz prejšnjega poglavja.

Za kroglo računamo *Helmholtzovo enačbo* v *sfernih koordinatah* in predpostavimo izotropno rešitev (simetrični način). Rešitev je *sferna Besselova funkcija*

$$N_r^{\text{jedro}}\left(r\right) \sim j_0\left(r\right) = \frac{\sin r}{r},\tag{39}$$

Kritična masa

kjer je r brezdimenzijska koordinata radija. V neskončnem plašču poznamo rešitev

$$N_r^{\text{jedro}}\left(r\right) = \frac{A}{r} + B. \tag{40}$$

Upoštevamo (29), (30), (31) in dobimo kritični radij $r_c = \frac{\pi}{2}$. Za lažjo primerjavo s kocko pišimo kritični premer krogle $x_c^{\text{krogla}} = \pi$.

Iz dobljene kritične velikosti krogle x_c^{krogla} poskušajmo oceniti kritično velikost kocke x_c^{kocka} . Nevtroni, ki se nahajajo znotraj telesa iz fisijskega materila predstavljajo vir novih nevtronov, medtem ko so nevtroni na površini telesa sorazmerni s številskim tokom delcev, ki zapuščajo telo. Aproksimirajmo kocko s kroglo in predpostavimo, da morata biti razmerji zaobjetih nevtronov in nevtronov na površini teles enaki za kocko in kroglo. Predpostavili smo torej

$$\frac{\int_D N_r^{\text{kocka}} \, \mathrm{d}V}{\int_{\partial D} N_r^{\text{kocka}} \, \mathrm{d}S} = \frac{\int_D N_r^{\text{krogla}} \, \mathrm{d}V}{\int_{\partial D} N_r^{\text{krogla}} \, \mathrm{d}S}.$$
(41)

Od tod dobimo $x_c = 2\sqrt{3} \arctan\left(\frac{6}{\pi\sqrt{3}}\right) \approx 2,89$, kar je nekoliko nad pravo kritično vrednostjo.

4. Metoda Monte Carlo

Izračunane vrednosti za kritične mase lahko primerjamo z numeričnimi simulacijami Monte Carlo (MC). Naključen premik nevtrona naredimo v skladu z analitičnim pristopom difuzijske aproskimacije, kjer je sipanje izotropno in atenuirano z eksponentom $e^{-\Sigma_t r}$ [1]. Tokrat reskalirajmo sistem z $\mathbf{r} \to \mathbf{r} \lambda_t$ ($\lambda_t = \Sigma_t^{-1}$), da bo povprečen korak enotski in velikost kocke $u = \frac{a}{\lambda_t} = \frac{d}{\lambda_t} \frac{a}{d} = \alpha x$, kjer iz zveze (16), vpeljave verjetnosti za fisijo $p_f = \frac{\Sigma_f}{\Sigma_t}$ in elastično sipanje $p_s = \frac{\Sigma_s}{\Sigma_t} = 1 - p_f$ dobimo

$$\alpha = \frac{u}{x} = \frac{d}{\lambda_t} = \sqrt{\frac{1 - p_f + \nu p_f}{3(\nu - 1)p_f}}.$$
(42)

Smer koraka posameznega nevtrona določimo z naključno izbiro $r_1,r_2\in[0,1]$ in

$$\theta = \arccos\left(2r_1 - 1\right), \quad \phi = 2\pi r_2,\tag{43}$$

kjer sta θ in ϕ polarni in azimutalni kot, velikost koraka l pa izberemo v skladu s porazdelitvijo $e^{-\Sigma_t r}$, torej z naključno izbiro $r_3 \in [0, 1]$ in

$$l = -\ln(r_3) \,.^{6} \tag{44}$$

Uporabili bomo *iterativno Monte Carlo metodo* [5], pri kateri simulacijo začnemo z danim številom nevtronov M, ki so poljubno porazdeljeni. Iteracijo izvajamo tako, da po premiku vseh nevtronov, ki se lahko pomnožijo z verjetnostjo p_f znotraj kocke izbrane velikosti u, izračunamo efektivni pomnoževalni faktor

$$k_{\rm ef} = \frac{\text{št. nevtronov nove generacije}}{\text{št. nevtronov stare generacije}}.$$
(45)

Če je $\Delta k_{\rm ef} = k_{\rm ef} - 1 > 0$ naključno odstranimo presežek nevtronov, da je na začetku naslednje iteracije MC znova izbrano število nevtronov M. Nasprotono za $\Delta k_{\rm ef} < 0$ naključno dodamo primankljaj

⁶Takšna implementacija simulacije odstopa od analitičnega pristopa na dveh mestih. Prvič, ker je povprečna dolžina koraka neodvisna od lege nevtrona, imata sredica ($\nu \neq 0$) in plašč ($\nu = 0$) različni difuzijski konstanti $D^{\text{jedro}} \neq D^{\text{plašč}}$, in drugič, ker posamezen premik nevtrona predstavlja tudi časovni korak t, je hitrost nevtronov spremenljiva $v \propto l$ namesto $t \propto l$. Obe pomankljivosti ne doprineseta k znatnim spremembam končnega rezultata x_c .

nevtronov. S ponavljanjem te iteracije ohranjamo število nevtronov v simulaciji in s tem časovno zahtevnost metode, popravljamo pa distribucijo nevtronov. Po nekaj začetnih iteracijah (npr. 300) začetna porazdelitev nevtronov konvergira proti rešitvi, tedaj pa lahko začnemo ocenjevati vrednost $k_{\rm ef}$, ki je pri kritičnih pogojih enaka 1.

V naslednjem podpoglavju 4.1 bomo najprej preverili, ali sta analitična in MC obravnava medsebojno usklajeni in data ob primerno izbranih parametrih enake rezultate za kritične velikosti x_c izbranih teles. V podpoglavju 4.2 bomo nato z MC metodo izračunali še kritične velikosti kocke in krogle v vakuumu in reflektorju za realne parametre urana ²³⁵U.

4.1 Uskladitev analitičnih in MC rezultatov

Za začetek preverimo usklajenost rezultatov difuzijske aproksimacije iz prejšnjih poglavij z rezultati MC za kritično velikost x_c . V tem podpoglavju bomo torej preverili veljavnost difuzijske aproksimacije oz. pravilnost implementacije MC simulacije ob medsebojno ustrezno izbranih parametrih v analitični in MC obravnavi. Ker je difuzijska aproksimacija ustrezna le za majhne gradiente številske gostote nevtronov N, moramo v MC simulaciji izbrati velikost kocke, ki je dovolj velika v primerjavi s povprečno dolžino koraka λ_t . Pri tem se je potrebno zavedati, da z večanjem velikosti kocke upotrebujemo za smiselne rezultate tudi večje število simuliranih nevtronov M, kar pa hitro povečuje časovno zahtevnost MC. Vzemimo u = 40 v primeru vakuuma in u = 10 za primer z reflektorjem (v primeru reflektorja namreč porazdelitev nevtronov N sega izven telesa). V vseh primerih imejmo število nevtronov M = 20000 in število novonastalih nevtronov na fisijo $\nu = 2$. Testirajmo več vhodnih vrednosti x, kriterij za kritičnost pa je podan z efektivnim pomnoževalnim faktorjem $k_{\rm ef}$, za katerega pri kritični velikosti x_c velja $k_{\rm ef} = 1$. S tem je postal p_f odvisen parameter, ki ga lahko izrazimo iz enačbe (42)

$$p_f = \left(1 - \nu + 3\left(\nu - 1\right) \cdot \left(\frac{u}{x}\right)^2\right)^{-1}.$$
(46)

V okolici kritičnosti so bile opravljene simulacije za kocko in kroglo, ki sta obdani z reflektorjem oz. vakuumom (slika 4). Ker so lege nevtronov nove generacije korelirane z legami nevtronov prejšnje generacije je simulacije smiselno opraviti večkrat pri enaki velikosti x, da se neželenega učinka korelacije znebimo. Kritična velikost telesa x_c je ocenjena kot presečišče interpolirane premice, ki se prilega rezultatom simulacij, in horizontalne premice $k_{\rm ef} = 1$.

Zaradi izbranega parametra $\alpha = \frac{u}{x}$, ki je povezan z λ_t , je potrebno ponovno izračunati analitično vrednost za x_c po enačbi (26). Pri tem v enačbi (26) vzemimo pravilnejšo vrednost ekstrapolacijske dolžine za ploščat stik z vakuumom $\lambda_{ex} = 0,7104 \lambda_t$ [4].

Izračunana x_c za telesi v vakuumu se ujemata z analitičnimi rezultati (tabela 2), opazimo pa manjše neujemanje analitičnih in MC rezultatov v primeru reflektorja. Usklajenost analitičnih in MC rezultatov lahko preverimo še z izrisom porazdelitev nevtronov pri kritičnih velikostih teles x_c , ki smo jih določili z MC (slika 5). Za primera v vakuumu se MC porazdelitvi skladata z analitčnima, primera z reflektorjem pa v repih porazdelitev odstopata. Razlog odstopanj v primeru reflektorja je ta, da smo v simulacijah imeli končno število delcev, analitični rezultati pa imajo asimptotsko obnašanje 1/x, ki ni normalizabilno. Če namesto neskončnega reflektorja, privzamemo v analitični obravnavi za kroglo reflektor končne velikosti npr. x = 20 (črtkana črta na sliki 5), dobimo dobro ujemanje porazdelitve z MC metodo. Izračun pokaže tudi ujemanje k_{ef} . Na enak način bi upravičili neujemanje porazdelitev za kocko, a je izračun zanjo v končnem reflektorju zahtevnejši.

Kritična masa

Slika 4. Prikazani so rezultati $k_{\rm ef}$ simulacij za kocko v vakuumu in plašču z enako difuzijsko konstanto v odvisnosti od velikosti teles x. Kritična velikost x_c je ocenjena kot presečišče $k_{\rm ef} = 1$ in interpoliranih premic.

Tabela 2. V tabeli so zbrani analitični in MC rezultati za kocko in kroglo, ki sta obdani z vakuumom oz. reflektorjem. Rezultati so med seboj usklajeni, manjše odstopanje primerov z reflektorjem pa pojasnimo s končnim številom delcev v simulacijah MC in asimptotskim obnašanjem 1/x v analitični obravnavi.

okoliški medij	$x_c^{ m kocka}$	$x_c^{ m krogla}$
vakuum (analitično)	$5,\!27$	6,06
(MC)	$5{,}24\pm0{,}03$	$6{,}08\pm0{,}03$
reflektor (analitično)	$2,\!59$	π
(MC)	$2{,}7\pm0{,}1$	$3{,}22\pm0{,}08$

Prostorska porazdelitev nevtronov N_r vzdolž x-osi

Slika 5. Grafi prikazujejo prostorske porazdelitve N_r vzdolž $\mathbf{r} = (x, 0, 0)$ za kocko in kroglo kritičnih velikosti v vakuumu in reflektorju.

4.2 Analitični in MC rezultati za uran ²³⁵U

Ko smo preverili delovanje MC, ponovimo simulacije še za resnične parametre urana ²³⁵U, ki so zbrani v tabeli 3, iz katerih izračunamo α in u. Rezultati kritičnosti MC metode za kocko in kroglo (slika 6 in tabela 4), ki sta obdani z reflektorjem oz. vakuumom, pokažejo močno odstopanje od analitičnih rezultatov, kar nakazuje na pomankljivost difuzijske aproksimacije za krajevno hitro spreminjajočo se porazdelitev nevtronov N_r , saj gradienti porazdelitev niso majhni v primerjavi

Tabela 3. Zbrani podatki za implementacijo numerične simulacije kritične velikosti urana 235 U.

količina	opis
$p_f \doteq 0,213$	verjetnost za fisijo
	od p_f verjetnost nastanka:
$p_2 = 0,363$	dveh(2) nevtronov
$p_3 = 0,637$	treh (3) nevtronov

s prosto potjo λ_t . Za uran ²³⁵U izrišimo še porazelitev nevtronov N_r MC simulacij vzdolž vzdolž *x*-osi pri kritičnih pogojih (slika 7).

Kritična velikost telesa x_c je ocenjena kot presečišče interpolirane premice, ki se prilega rezultatom simulacij, in horizontalne premice $k_{\text{ef}} = 1$ (tabela 4)

Slika 6. Prikazani so rezultati k_{ef} z izbranimi realnimi parametri za kocko in kroglo urana ²³⁵ v vakuumu in reflektorju v odvisnosti od velikosti x. Kritična velikost x_c je ocenjena kot presečišče $k_{\text{ef}} = 1$ in interpoliranih premic.

Tabela 4. V tabeli so zbrane izračunane kritične velikosti kocke $x_c^{\text{kocka}} = \frac{a}{d}$ in kritične mase M_c^{kocka} . Za primerjavo so navedeni še kritični premeri x_c^{krogla} in mase krogle M_c^{krogla} v enakih pogojih. Rezultati simulacij odstopajo od analitičnih, saj gradienti porazdelitve nevotronov N niso majhni v primerjavi s prosto potjo λ_t . Opozoriti velja, da izračunane kritične velikosti in mase ne odražajo dejanskih izmerjenih kritičnih mas, ki za kroglo znaša $M_c^{\text{krogla}} = 52 \, kg$.

okoliški medij	$x_c^{ m kocka}$	$M_c^{ m kocka}$ [kg]	x_c^{krogla}	$M_c^{\rm krogla}$ [kg]
vakuum (superkritična)	$5,\!44$	206	2π	166
(kritična)	$4,\!31$	102	4,88	78
(MC)	$3,\!24$	43,5	$3,\!86$	38,5
plašč z enako dif. konst.	$2,\!59$	22,2	π	20,8
(približek)	$2,\!89$	30,9		
(MC)	$2,\!17$	13,1	$2,\!66$	$12,\!6$

Kritična masa

Prostorska porazdelitev nevtronov N_r vzdolž x-osi

Slika 7. Grafi prikazujejo prostorske porazdelitve N_r vzdolž $\mathbf{r} = (x, 0, 0)$. K rezultatom MC simulacij so prilegane pripadajoče funkcijske odvisnosti iz analitične obravnave, ki so ustrezno reskalirane (npr. za kocko v vakuumu $N_r(x) = C \cos(cx)$). Na grafu kocke v reflektorju je prikazana podobnost porazdelitve z rešitvijo za kroglo (modra črtkana črta). Iz ekstrapolacij primerov teles v vakuumu je moč oceniti ekstrapolacijsko dolžino λ_{ex} .

5. Zaključek

Z uporabo enogrupne difuzijske aproksimacije za nevtrone sta izračunani kritični masi kocke ²³⁵U v vakuumu in snovi z enako difuzijsko konstanto. Poleg enogrupnega približka je za lažjo obravnavo problema predpostavljeno še izotropno sipanje nevtronov v laboratorijskem sistemu, enačena pa sta tudi absorpcijski in fisijski makroskopski presek, kar pomeni, da vsak absorbiran nevtron povzroči cepitev jedra. V robnih pogojih so bili uporabljeni rezultati Fickovega zakona.

Kritičnost kocke obdane z neskončnim plaščem je izračunana z uporabo *Greenovih funkcij* in *Greenovih identitet*. Smiselnost rezultatov je preverjena z analitičnimi rezultati za kroglo v enakih pogojih (vakuum, reflektor). Analitična obravnava je skladna z rezultati numeričnih simulacij (*Monte Carlo*), kjer so parametri simulacij izbrani tako, da je izpolnjen pogoj o majhnih gradientih številske gostote nevtronov v primerjavi s povprečno prosto potjo nevtronov. Rezultati simulacij, v katerih so bili uporabljeni podatki za uran ²³⁵U, močno odstopajo od analitičnih rezultatov, saj pogoji difuzijske aproksimacije niso izpolnjeni.

LITERATURA

- RAGHEB, M., 2017. Neutron Diffusion Theory, Nuclear Power Engineering University of Illinois at Urbana-Champaign, USA. (online) Dostopno na: http://mragheb.com/NPRE%20402%20ME%20405%20Nuclear%20 Power%20Engineering/Neutron%20Diffusion%20Theory.pdf (12. 2. 2018).
- [2] Neutron Diffusion Theory, Nuclear Power (online) 2017. Dostopno na: https://www.nuclear-power.net/nuclear-power/reactor-physics/neutron-diffusion-theory/ (14. 2. 2018)
- [3] CAMERON REED, B., 2011. The Physics of the Manhattan Project. (online) 2. izd. Berlin: Springer. 2. pogl. (str. 49–95). Dostopno na: http://www.springer.com/cda/content/document/cda_downloaddocument/ 9783662435328-c1.pdf?SGWID=0-0-45-1477110-p176757978 (12. 2. 2018).
- BECKURTS, K. H., WIRTZ, K., 1964. Neutron Physics. (online) Berlin: Springer-Verlag. str. 95. Dostopno na: https://books.google.si/books?id=a8P-CAAAQBAJ&lpg=PA95&dq=extrapolated%20length%20for%20curved %20surface&hl=sl&pg=PA95#v=onepage&q&f=false (11. 7. 2018)
- [5] SCHEBEN, F., 2011. Iterative Methods for Criticality Computations in Neutron Transport Theory University of Bath, Department of Mathematical Sciences, UK (online) 4. pogl. (str. 80 119) Dostopno na: http://people.bath.ac.uk/masigg/theses/Scheben_thesis.pdf (17. 2. 2018)