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An isolated quantum many-body system with intrinsic interaction, will thermalize, i.e. values of local observables
will settle on their thermal equilibrium values. And while that is true for the vast majority of cases that might not
be true for highly disordered systems. Despite that such behavior is well known in the case of finite sized systems,
known as many-body localization, the question remains, does such state survive even in the thermodynamical limit,
such that it becomes a new state of matter, whose most attractive property would be its ability to locally preserve
information indefinitely.

MNOGODELČNA LOKALIZACIJA

Kvantni mnogodelčni sistem z intrinzično interakcijo bo termaliziral. To pomeni, da se pričakovane vrednosti
lokalnih opazljivk ustalijo pri njihovi vrednosti v termičnem ravnovesju. Čeprav slednje velja za veliko večino kvantnih
sistemov, to ni nujno res za sisteme z visoko stopnjo nereda. Kljub temu, da je takšno obnašanje, imenovano tudi
mnogodelčna lokalizacija, poznano za sisteme s končnim številom delcev, pa vprašanje ostaja. Ali takšno stanje preživi
tudi v termodinamski limiti in s tem postane novo stanje snovi, čigar najbolj zanimiva lastnost je njegova zmožnost
ohranjanja lokalne informacije.

1. Introduction

Even without a deep understanding of thermodynamics or statistical physics, people have developed

a remarkably good understanding of the thermalization process. One can without much thinking

predict that a tea bag sunk into hot water will eventually evenly color the entire water, or that a

metal spoon sunken into hot soup will, after some time, become hot in its entirety. Truly, humans

have developed great intuition when it comes to predicting what will happen to most many body

classical systems after long enough time, even without knowledge of statistical physics.

On the other hand, we rarely, if ever, directly interact with quantum systems since the majority

of quantum effects take place at scales much smaller than our own. Hence, our intuition is not

really made for the quantum world, and consequently, one can find many surprises while researching

quantum systems.

When talking about the thermalization in quantum many-body systems, one most of the time

refers to the values of local observables after a long enough time. It turns out that for the majority

of quantum many-body systems that are sent out of equilibrium, values of local observables –

evaluated in the steady-state of the system – do thermalize. This means that their long time

behavior is dependent only on the energy of the initial state. One then has to ask oneself, when

does that not apply? The ergodic hypothesis states that after sufficiently long period of time every

possible microstate of the system in a reasonable energy shell is equally probable. If we look for

quantum counterparts of classical systems for which it does not apply, these are integrable systems

with macroscopically many conserved quantities that do not thermalize. However, inclusion of even

small perturbations can make them thermalize. Since we want a robust class of quantum many-body

systems that does not thermalize under small perturbations, we turn our interest the other way.

Instead of looking at the fine-tuned integrable systems, we look at the systems with high enough

disorder, which could prevent thermalization.

cb ©2025 The Author(s). Original content from this work may be used under the terms of the Creative
Commons Attribution 4.0 licence.

Matrika 12 (2025) 2 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Enej Žlebnik Jančič

The systems in which our interest lies are known as local systems and have another interesting

property, which is their ability to preserve information locally and indefinitely. Such property could

be utilized in quantum computers and quantum informatics, where conservation of information is

of vital importance.

2. Chaos: classical and quantum

Since the appearance of thermalization in a system is closely related to the presence of chaos in

the system, it makes sense that understanding the dynamics of chaotic systems is a great first step

toward understanding thermalization and, later, many-body localization.

2.1 Classical chaos and integrable systems

In this short chapter, we will make a quick and very simplified overview of classical chaos and inte-

grable systems, since their quantum counterparts will play an important role in the later chapters.

It is generally agreed that a classical dynamical system is chaotic if it exhibits an exponential

sensitivity of the phase-space trajectories to the small perturbations of the initial conditions. In

other words, the two phase-space trajectories initially separated by distance |δZ 0| will diverge from
one another at a rate |δZ (t)| ≈ eλt|δZ 0|, where λ represents a Lyanpunov exponent.

On the other hand, there exists a class of dynamical systems that do not exhibit chaotic motion,

which are known as integrable systems. Let us consider a classical Hamiltonian H(p, q) where

p = (p1, . . . , pN ) represent the canonical momentum and q = (q0, . . . , qN ) represents the canonical

coordinates. If such system has as many independent conserved quantities I = (I1, . . . , IN ), as

degrees of freedom N , and

{Ij , H} = 0, {Ij , Ii} = 0, (1)

where {f, g} is a Poisson bracket, then we say that the system is integrable. One can easily show

that for such systems, the phase-space trajectories do not diverge at an exponential rate.

2.2 Quantum chaos and RMT

Defining chaos in quantum systems is not as simple as one might hope. While quantum mechan-

ics can be formulated in a phase-space language using Wigner-Weyl quantization, the notion of

trajectories still cannot be formulated, due to the uncertainty principle. And even if phase-space

trajectories could somehow be defined, since the Schrödinger equation is linear, one cannot have

exponentially departing trajectories. Even more, the overlap of two wave functions governed by the

same Hamiltonian remains constant at all times:

⟨ψ(t)|ϕ(t)⟩ = ⟨ψ| e
i
ℏ Ĥ · e−

i
ℏ Ĥ |ϕ⟩ = ⟨ψ|ϕ⟩. (2)

The theory on which the quantum chaos is build is now known as a Random Matrix Theory

or RMT [1] in short. It was developed by Wigner [2], Dyson [3] and others when studying the

spectra of complex nuclei. Their idea was that studying the exact energy levels of such nuclei was

hopeless and that one should instead focus on the general properties of their spectra. Their second

insight was that the structure of Hamiltonian matrices of such complex systems would essentially

look like a random matrix if written in a non-fine-tuned basis. In general, when speaking of a

matrix written in a fine-tuned basis one means a basis in which the number of nonzero off-diagonal

elements is small. For example, the basis in which the matrix is diagonal is the most fine-tuned.

Oppositely, a non-fine-tuned basis is a basis that has many nonzero off-diagonal elements. The

latter holds true if the matrix elements are inspected in a small energy window in which level

density is constant. Therefore, by studying the statistical properties of random matrices (subjected
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to the same symmetry constraints as the investigated Hamiltonian), one should get insight into the

statistical properties of energy spectra and eigenstates of complex quantum systems.

The main ideas of RMT (and underlying Wigner-Dyson statistics) can be understood using 2×2

Hamiltonians whose entries are random numbers sampled from a Gaussian distribution

Ĥ =

(
ε1

V√
2

V ∗
√
2

ε2

)
. (3)

Here, the prefactor 1/
√
2 in off-diagonal matrix elements guarantees that the Hamiltonian is invari-

ant under basis rotations, while ε1, ε2 and V are random numbers. Obtaining the eigenvalue of a

2× 2 matrix is trivial, and we get

E1,2 =
ε1 + ε2

2
±
√
(ε1 + ε2)2 + 2|V |2. (4)

Our interest now shifts towards obtaining the probability distribution of the spacing between the

energy levels, P (E1−E2 = s) ≡ P (s). For simplicity, we consider only time-reversal symmetry, and

therefore V ∗ = V . Under the assumption that ε1, ε2 and V in Eq. (4) are taken from a Gaussian

distribution with an average of 0 and a variance of σ we can write

P (s) =
1

(2π)3/2σ3

∫
dε1

∫
dε2

∫
dV δ(

√
(ε1 + ε2)2 + 2V 2 − s) exp

(
−ε

2
1 + ε22 + V 2

2σ2

)
. (5)

By introducing a new variable ξ = (ε2 − ε1)/
√
2, and integrating over ε1, we are left with

P (s) =
1

2πσ2

∫ ∫
dξdV δ(

√
2ξ2 + 2V 2 − s) exp

(
−ξ

2 + V 2

2σ2

)
, (6)

which can be evaluated using the polar coordinates, such that V = r cos(φ) and ξ = r sin(φ). After

integration, we get

P (s) =
s

2σ2
exp

(
− s2

4σ2

)
. (7)
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Figure 1. Level spacing distributions for
the Gaussian orthogonal ensemble (GOE), the
Gaussian unitary ensemble (GUE), the Gaus-
sian symplectic ensemble (GSE) and the Pois-
sonian ensemble.

Level spacing distribution calculated in this section

corresponds to the Gaussian orthogonal ensemble (GOE),

which as we stated before, describes systems with time re-

versal symmetry. For completeness, we should state that

there are two more important classes of such ensembles,

namely the Gaussian unitary ensemble (GUE), which de-

scribes systems with no time reversal symmetry, and the

Gaussian symplectic ensemble (GSE), used to describe

Hamiltonians with spin-orbit coupling, which has a time-

reversal symmetry but no rotational symmetry. Equation

(7), also known as a Wigner surmise, can be generalized

to also include GUE and GSE as

P (β)(s) = Aβs
β exp(−Bβs

2). (8)

Here β = 1 is used for GOE, β = 2 for GUE and β = 4 for GSE. Their distributions can be seen in

Fig. (1).

For quantum systems, Wigner-Dyson distribution of level spacing signals towards the chaotic

behavior. The question that remains is what would be analogy for non-ergodic systems. Example
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of such systems are integrable systems, and for them, it has been shown [4] that such systems follow

a Poissonian distribution

PP (s) = e−s. (9)

The statement is true for the majority of quantum systems, regardless whether they have a classical

counterpart or not.

2.3 Eigenstate thermalization hypothesis

Let us consider an isolated many-body quantum system whose dynamics is governed by a Hamil-

tonian Ĥ with a complete set of eigenvalues En and eigenvectors |n⟩. If we prepare an initial state

|ψ⟩, that is not an eigenstate of Ĥ, the expected value of local observable Â at time τ will be

A(τ) =
∑
m

|cm|2Amm +
∑

m,n ̸=m

e−i(Em−En)τ c∗mcnAmn, (10)

where Amn = ⟨m|Â|n⟩ and cn = ⟨n|ψ⟩. The time average of Aτ can then be written as [5]

Ā(t) =
1

t

∫ t

0
dτA(τ) =

∑
m

|cm|2Amm +
i

t

∑
m,n ̸=m

e−i(Em−En)t c∗mcn
Em − En

Amn, (11)

Ā = lim
t→∞

Ā(t) =
∑
m

|cm|2Amm. (12)

We can notice that for studying long-time behavior of the observable, one should focus on properties

of diagonal elements Amm. Furthermore, the second term in Eq. (10) sets the timescale of approach

to the equilibrium value, Ā = limt→∞ Ā(t), which is determined by the properties of the off diagonal

elements Amn as shown in the Eq. (11). The eigenstate thermalization hypothesis (ETH) ansatz for

the matrix elements of the observable in an eigenbasis of Ĥ [6], states that for majority of systems

is

Amn = A(Ē)δmn + e−S(Ē)/2fA(Ē, ωmn)Rmn, (13)

where Ē = (Em + En)/2 is the mean energy, ωmn = Em − En is the energy difference, Rmn is a

random variable with a zero mean and of unit variance, A(Ē) and fA(Ē, ωmn) are smooth functions

and S(Ē) is a thermodynamic entropy at an energy Ē. It turns out that within the random matrix

theory A(Ē) = const. and fA(Ē, ωmn) = 1. In contrast, the integrable systems do not oblige to the

ansatz introduced in Eq. (13).

If we expand Eq. (12) around the mean energy E0 = ⟨ψ| ˆ̂H|ψ⟩ with a sufficiently small energy

variance ∆E in the initial state |ψ⟩, it has been shown [7] that we get

lim
t→∞

Ā(t) =
1

NE0,∆E

∑
m

Amm ≡ Tr[ρ̂MCÂ]; |E0 − Em| < ∆E, (14)

where ρ̂MC represents the density of states in the microcanonical ensemble, and NE0,∆E is the

number of states.

The eigenstate thermalization hypothesis also suggests that quantum thermalization greatly

differs from its classical counterpart, since in the classical systems, a thermal state is constructed

from the initial state which, generally does not resemble the former. In the case of the quantum

systems the thermal state is already hidden in the initial state, but due to the coherence of the

eigenstates it arises only after some time has passed due to the dephasing.
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3. Many-body localized state

Let us now turn our attention to the question, when does the ETH ansatz from Eq. (13) apply?

It turns out there is no formal proof that would guarantee the validity of the ETH for the general

case, even more so for the fine-tuned integrable Hamiltonians that are counterexamples to ETH.

However, our interest does not lie in such systems, since even a small perturbation could break the

integrability of the system, causing it to adhere to the prediction made by the ETH.

3.1 Anderson model

A historically important model that breaks ETH is the Anderson model, which exhibits Anderson

localization [8] and has no classical counterpart. One should note that the Anderson model is the

quadratic model and as such does not exhibit many-body localization in which our interest lies.

Nevertheless, it was shown that Anderson insulator breaks single-particle eigenstate thermalization

[9].

Let’s now take a bit closer look at the Anderson model. Consider N sites on a lattice where

a non-interacting particle moves (in the case of the Anderson insulator, that is an electron). The

Hamiltonian of such system is

Ĥ =
∑
⟨i,j⟩

(ĉ†i ĉj + h.c.) +
∑
i

ϵiĉ
†
i ĉi, (15)

where ĉ†i (ĉi) are fermionic creation and annihilation operators acting on site i. The sum over

neighboring sites is denoted ⟨i, j⟩, and ϵi is the on-site energy. In the case of the Anderson model,

the on-site energies ϵi are uncorrelated random numbers. If the variance of ϵi in 3-dimensional

system becomes sufficiently large compared to the hopping rate (first term in Eq. (15)), the particle

becomes confined in the neighborhood of its original position, and the system cannot thermalize.

In the case of a 1 or 2-dimensional system, the particle localizes for any nonzero variance of ϵi.

3.2 Defining MBL phase

Let us now turn to many-body localized state, i.e., a state of the system where particles are localized

even under the interactions between particles. For such systems, it is emphasized that they avoid

thermalization [10]. Let us consider an isolated many-body system whose dynamic is governed by

Hamiltonian Ĥ. If there exists a local observable Â whose long-time average follows

A∞ = lim
L→∞

lim
t→∞

Ā(t) ̸= Tr[ρ̂MCÂ], (16)

then the system is called non-ergodic. If such non-ergodic behavior is exhibited for a robust class

of initial states and observables, then we say that the system is in the MBL phase. On the other

hand, if thermalization does occur for all local observables Â, i.e., Equation (14) is satisfied, we say

that the system is in an ergodic phase.

In Eq. (16), we can see that it contains a double limit of infinite time t→ ∞ and infinite system

size L → ∞. It is essential that our definition of an MBL phase contains both limits since only in

that case, our definition is disparate from that of an ergodic phase.

3.3 Disordered spin chain

The paradigmatic model in studies of many-body localization is 1D disordered XXZ spin 1/2-chain

whose Hamiltonian reads

ĤXXZ =
L∑
i=1

Ji

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1

)
+

L∑
i=1

hiŜ
z
i , (17)
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where Ŝα
i represents spin operators σ̂αi /2, α ∈ {x, y, z}, periodic boundary conditions are assumed

Ŝα
L+1 = Ŝα

1 and Ji = 1 sets the energy scale. The second term represents interaction with a random

magnetic fields hi, which are independent random variables sampled from the uniform distribution

on the interval [−W,W ], where W is the disorder strength. In the case of W → 0, the XXZ model

becomes integrable and can be solved analytically using the Bethe ansatz. Parameter ∆ is usually

fixed to 1, and as long as its value is of the unit order, the non-equilibrium properties of a system

in the presence of a disorder W are qualitatively the same.

Studies of the XXZ model have shown that with the increasing size of disorder W , the system

starts to show signatures of non-ergodicity, which can be interpreted as a transition towards the

MBL phase.

It should be noted that when W goes towards 0, the XXZ model becomes integrable, which

somewhat complicates studying its transition from ergodic to the MBL phase, since the ergodicity

window becomes quite narrow (for W = 0 system is integrable, for small values of W the system

is ergodic and for large W we get MBL regime). To solve that issue, we can introduce the third

term into the Eq. (17), which introduces coupling to the next-nearest neighbor, which breaks the

integrability at W = 0. This system is called J1 − J2, and its Hamiltonian is written as

ĤJ1−J2 = HXXZ +

L∑
i=1

(
Ŝx
i Ŝ

x
i+2 + Ŝy

i Ŝ
y
i+2 +∆Ŝz

i Ŝ
z
i+2

)
. (18)

4. Detecting MBL state

Figure 2. Here we assume that a quantity X
can be used to distinguish ergodic and MBL
regime. For low values of the disorder W its
value is ≈ 1 which indicates that the system is
in the ergodic regime, while for higher values
of W its value falls towards 0. (a) Scenario in
which a crossing point W ∗ for all system sizes
is the same. (b) Scenario in which the crossing
point between the consecutive system sizes is
not the same. Hence, we cannot assume the
stability of a MBL phase in the thermodynamic
limit. Image taken from [11].

One method used for distinguishing between ergodic and

the MBL state has already been established in Sec. (2.2

), where it was shown that one can differentiate between

the states by studying the level spacing distribution of a

system. This, of course, is not the only method used to

analyze the ergodic-MBL transition and better measure

of such transition would, for example, be a quantity X as

shown in Fig. (2) whose value is one for the ergodic regime

and of zero for the MBL regime, with a distinctive fall

between both values. In addition to our demand for the

distinctive separation between the two regimes, it should

be noted that while our main interest lies in the MBL

phase as defined in Eq. (16), with classical computers we

cannot achieve system size even remotely close to that of

the thermodynamic limit. With that in mind, we would

also like our quantity to be able to distinctly show what

happens with increasing system size.

Let us now take a look at the aforementioned quantity

X and examine it behaves at different system sizes. With

scaling of the system size, one can expect that lines representing different system sizes cross at some

value of disorderW . Here, we are presented with two possible scenarios. The first scenario is that all

lines representing different system sizes cross at one point W ∗ (here W ∗ denotes the crossing point

for the system of a finite size, whileWC represents the transition point in the thermodynamical limit.

Hence, W ∗ L→∞−−−−→ WC) which is shown in Fig. (2(a)). In such scenario, one can assume that even

in the thermodynamical limit, the MBL regime is stable with a phase transition at W = WC . The

second scenario, which often arises when studying MBL, occurs when the crossing point between
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consecutive system sizes starts drifting, as we can observe in Fig. (2(b)). If that is the case, system

properties in the thermodynamical limit are dependent on properties of such drift, which is difficult

to study with classical computers.

4.1 Gap ratio

Figure 3. Average gap ratio calculated for J1 −
J2 model. Value of r̄ changes from r̄GOE ≈
0.5307 for small disorder W to r̄P ≈ 0.3863 for
large. Image taken from [11].

In the case of discrete spectra of a finite-sized system, we

can define the energy level spacing δn between adjacent

energy levels as

δn = En+1 − En, (19)

where the eigenvalues En of Hamiltonian Ĥ are given in

ascending order. We can now introduce gap ratio [12] as

rn =
min{δn, δn+1}
max{δn, δn+1}

. (20)

In the case of a Poissonian level statistic, as shown

in Eq. (9), the mean value of rn can easily be obtained

as r̄P = 2 ln 2 − 1 ≈ 0.3863. The mean gap ratio of the

GOE can be obtained numerically, and it turns out that

its mean value is r̄GOE ≈ 0.5307.

The average gap ratio calculated for the J1 − J2 model, as shown in Eq. (18) is shown in Fig.

(3). We can see that for sufficiently small disorderW ⪅ 6 value of r̄ falls in order with the prediction

made by the RMT, while on the other hand, for disorder strengthW ⪆ 10 we observe a monotonous

decrease towards r̄P .

In contrast with that, we also notice a distinctive drift of W ∗ with scaling system size L, which

could in turn be an indicator that the MBL phase in the thermodynamical limit may not survive.

4.2 Thouless time

Since the gap ratio probes the system at the smallest energy scale, namely mean level spacing ⟨δ⟩,
the gap ratio reflects the system’s properties at the largest time scale, so-called Heisenberg time

tH = 1/ ⟨δ⟩, beyond which dynamics starts to become quasiperiodic. Therefore, the gap ratio is a

measure applicable for probing systems at large time scales, but not so much at smaller ones.

The spectral form factor (SFF) is defined as the Fourier transform of the two-point correlation

function. It provides insight into time scales much smaller than the Heisenberg time tH . The

averaged SFF can then be expressed as

K(τ) =
1

Z

〈∣∣∣∣∣∣
N∑
j=1

g(ϵj)e
−iϵjτ

∣∣∣∣∣∣
2〉

, (21)

where {ϵj} represents unfolded eigenvalues of a system [13], and Z is a normalization used to ensure

that K(τ)
τ→∞−−−→ 1. The filtering function g(ϵ) which is a Gaussian function with a mean in the

middle of the spectrum and a variance proportional to the variance of {ϵ1, ϵ2, . . . , ϵN } is used to

reduce the effects of spectrum edges. SFF from equation Eq. (21) follows implementation from [14].

SFF can be calculated analytically for all Gaussian ensembles [1] and more specifically for GOE

reads

KGOE(τ) =

{
2τ − τ log (2τ − 1); 0 < τ ≤ 1

2− τ log (2τ+1
2τ−1); τ > 1.

, (22)
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Figure 4. Spectral form factor of the J1 − J2

model for W = 2.5, 10. (a) In the regime with
low disorder, it can be observed, that system for
τ > tTh adheres to KGOE(τ) (dashed line). (b)
In case of large disorder (MBL) phase system
for large enough τ follows the result of KP (τ) =
1. Image taken from [11].

Linear regime with logarithmic corrections for 0 < τ ≤ 1

is often referred to as the ramp, which represents long-

range correlations between all pairs of eigenvalues. On the

other hand, regime for τ > 1 where KGOE(τ) is almost

constant, excluding logarithmic corrections, is called the

plateau. The onset of the plateau can be interpreted as an

onset of quasiperiodic dynamics beyond Heisenberg time.

One should be aware that physical time of the system t

and parameter τ are linked via t = τtH .

Calculating SFF for the J1 − J2 model in the ergodic

regime as shown in Fig. (4(a)) shows that for sufficiently

large enough τ , SFF follows the prediction given by the

GOE. The appearance of said adherence to the RMT

prediction occurs at the Thouless time tTh. In case of

diffusive systems, the Thouless time scales quadratically

with the system size tTh ∝ L2 [15]. The adherence of the SFF to the predictions made by

RMT at the Thouless time can also be understood as an onset of quantum chaotic dynamics.

Figure 5. Ergodicity indicator g for J1 − J2

model in respect to W/L. We can see that the
crossing point W ∗/L is independent of the sys-
tem scaling, from what, one can assume linear
dependence of W ∗ in respect to L and from that
instability of the MBL phase for J1−J2 model.
Image taken from [14].

In contrast to the low disorder limit, for high enough

disorder, as shown in Fig. (4), the SFF does appear to

follow the Poisson level statistic KP (τ) = 1 and hence the

notion of tTh becomes less meaningful.

Analysis using both Heisenberg and Thouless time al-

lows us to inspect the system at all relevant time scales.

Let us now consider the ergodicity indicator g taken from

[14], defined as

g = log10(tH/tTh)
tTh=tHτTh= log10(1/τTh). (23)

Such definition of g in the thermodynamic limit inter-

polates between the ergodic and nonergodic regime. In

ergodic regime K(τ) adheres to KGOE(τ) and therefore

τTh → 0 ⇒ g → ∞. On the other hand in the case

of nonergodic regime K(τ) adheres to KP (τ), which ap-

proaches KGOE(τ) asymptotically. From that can there-

fore be gathered that τTh → ∞ ⇒ g → −∞. Numerical

evaluation of g for the J1 − J2 model for the system sizes L ∈ {12, 14, 16, 18}, as shown in Fig. (5).

One can see that the crossing point W ∗/L is independent of the system size L, from what could be

assumed, that W ∗ scales linearly with respect to L as W ∗(L) = w0 +w1L where w0 and w1 can be

acquired using a linear fit.

Now we are left with two scenarios. First one is that a linear dependence of the W ∗ holds

true for all system sizes. Then WC = W ∗(L → ∞) → ∞ and if that is the case, then the MBL

phase is not realized in the J1 − J2 model. The second case is more optimistic and takes into

account that the system sizes which are accessible to the classical computers, are far from the one

of the thermodynamic limit and therefore W ∗ could still converge to some finite value WC at larger

systems. If that is the case, we would get a robust MBL phase.
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5. Conclusion

The MBL phase is still a relatively young field of research, and as such, it poses many more unan-

swered questions than answers. There are still uncertainties about whether our definition using the

violation of a microcanonical prediction is correct and what mechanism is driving the transition from

ergodic to the MBL phase, if such phase even exists. And while big steps have already been made

towards answering these questions, there is still a long way ahead before we completely understand

properties of the MBL phase.
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