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SQUIRMER MODEL OF MICROSWIMMERS
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The study of microswimmers in low Reynolds number environments plays a crucial role in the understanding of
biological locomotion. This article investigates the hydrodynamics governing microscale swimming, with a focus on
the squirmer model – a canonical representation of self-propulsion driven by surface distortions. It begins with an
overview of the fundamental principles of low Reynolds number hydrodynamics, including the Stokes equation and key
concepts such as rate independence and the scallop theorem. The squirmer model is then derived, and its swimming
velocity is calculated using both direct solutions of the flow field and the Lorentz reciprocal theorem. Squirmers are
further classified into pushers and pullers according to their flow field characteristics, and their interactions with solid
boundaries are examined. Theoretical predictions are finally compared with experimental data for Volvox carteri,
demonstrating the model’s effectiveness in capturing the behaviour of biological swimmers.

MODEL ZVIJAČA ZA MIKROPLAVALCE

Študij mikroplavalcev v okolju z nizkim Reynoldsovim številom ima ključno vlogo pri razumevanju biološkega
samopogona. Članek obravnava hidrodinamiko, ki določa gibanje na mikroskali, s poudarkom na modelu zvijača
(angl. squirmer), kanoničnem opisu samopogona, ki izhaja iz površinskih deformacij. Članek začne s pregledom
temeljnih načel hidrodinamike pri nizkem Reynoldsovem številu, vključno s Stokesovo enačbo ter ključnimi pojmi, kot
sta neodvisnost od hitrosti in teorem školjke. Nato je izpeljan model zvijača, njegova hitrost plavanja pa izračunana
z uporabo neposrednih rešitev tokovnega polja ter Lorentzovega izreka o recipročnosti. Zvijači so nadalje razvrščeni
na potiskače in vlečnike glede na značilnosti njihovih tokovnih polj, pri čemer so analizirane tudi njihove interakcije
s togimi mejami. Teoretične napovedi so na koncu primerjane z eksperimentalnimi podatki za Volvox carteri, kar
potrjuje učinkovitost modela pri opisu obnašanja bioloških plavalcev.

1. Introduction

At small scales, from 1µm to 100µm, which we can call the microscale, locomotion plays a decisive

role in biological systems and also in artificial microswimmers. On the microscale, the fluid dynamics

around swimmers differ fundamentally from macroscopic swimming due to the dominance of viscous

forces. The Reynolds number, which quantifies the relative importance of inertial and viscous

effects, is extraordinarily small in microorganisms, leading to unique swimming strategies. One

of the most influential insights into swimming at low Reynolds numbers came from Purcell in the

form of the scallop theorem, which states that time-reversible motion in a Stokes fluid cannot

generate net propulsion [1]. Consequently, microswimmers must move with non-reciprocal patterns,

such as fluctuating flagella, rotating helices, or surface distortions. A simple but powerful model

for such motions is the squirmer model, introduced by Lighthill and Blake [2, 3]. The squirmer

represents a spherical microswimmer that propels itself by tangential surface velocities, mimicking

ciliated microorganisms such as volvox or paramecium. The model enables analytical and numerical

investigations of self-propulsion, fluid interactions, and boundary effects. In this article, we first give

an overview of the fundamental hydrodynamics governing swimming at low Reynolds numbers and

the mathematical formulation of the squirmer model. Then we derive its swimming behaviour

velocity using two approaches: direct solutions of the Stokes equation and the Lorentz’s reciprocal

theorem [4]. Furthermore, we classify squirmers as pushers or pullers based on their flow properties

and study their interactions with solid boundaries. Finally, we compare the theoretical predictions

with experimental observations of Volvox carteri, to illustrate the applicability of the model to

microswimmers in the real world [5].

cb ©2025 The Author(s). Original content from this work may be used under the terms of the Creative
Commons Attribution 4.0 licence.
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2. Low Reynolds number hydrodynamics

2.1 General properties

To understand the effect of the forces acting on a floating organism in an incompressible Newtonian

fluid, we need to solve the Navier-Stokes equation for the velocity field v, the density ρ and the

viscosity η

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ η∇2v, ∇ · v = 0, (1)

where ∇ · v = 0 only applies to incompressible fluids. The Navier-Stokes equation can be derived

from the linear Cauchy momentum equation [6]. A Newtonian fluid is a fluid in which the rela-

tionship between the viscous part of the stress tensor and the strain rate tensor vik is linear. For

incompressible fluids, the viscous part of the stress reads σv
ik = 2ηvik, where vik = 1

2 (∂ivk + ∂kvi),

and

σik = −pδik + σv
ik. (2)

In order to solve Equation (1), we need sufficient boundary conditions. Normally we say that the

velocity field at the boundary of the immersed body is zero, v|∂B = 0 (so-called no-slip boundary

condition). The condition of incompressibility, ∇·v = 0, follows from the continuity equation. Since

there are five variables in the general Navier-Stokes equation (three spatial components of v, η and

p), we need an additional equation, a thermodynamic relation p = p(ρ). Once we have solved v and

p, the stress tensor is given by Equation (2) and the force F and torque M acting on a submerged

body are determined by integrating over its surface:

F =

∮
∂V

σ · ndS, M =

∮
∂V

r × (σ · n) dS. (3)

If we convert the Navier-Stokes equation into a non-dimensional form, we find that the solution

is parameterized with three constants: the Strouhal number, the Euler number, and the Reynolds

number. The most important one for us is the Reynolds number, Re = ρV L
η where V is the typical

velocity of the flow and L is the characteristic size of the swimming body. The Reynolds number

indicates the properties of the flow regime and has several different physical interpretations.

• Consider a body of size L with steady surrounding flow with velocity V . Reynolds number

is the ratio of the typical inertial term in the Navier-Stokes equation ρv · ∇v, to the viscous

forces per unit volume η∇2v. Thus, Re = ρV L/η. In a low Reynolds number flow, the viscous

forces dominate [7].

• The typical time scale for a local velocity perturbation to be convectively (by an inertial term)

transported by the flow along a body is tconv = L/V . On the other hand, the typical time

for the perturbation to diffuse away from the body due to viscosity is tdiff = ρL2/η. Reynolds

number is therefore Re = tdiff/tconv, and low Reynolds number flow is the one for which fluid

transport is dominated by viscous diffusion [7].

• Familiar interpretation is the definition with ratios of forces acting on the body. A typi-

cal viscous stress on a body is given by σviscous = ηV/L, leading to a typical viscous force

fvisc = ηV L. Inertial forces can be approximated from the Bernoulli equation finert = ρV 2L2.

Similarly, Reynolds number is interpreted as Re = finert/fvisc, meaning that in low Reynolds

effect of inertial forces is insignificant [7].

With these interpretations of the Reynolds number, we can determine the Reynolds number for

certain microswimmers. For example, the bacterium E. coli (L ≈ 1 − 10µm) with a velocity
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V ≈ 10µm s−1 in water (ρ ≈ 103 kg m−3, η = 10−3 Pa s) has a Reynolds number Re ≈ 10−5−10−4,

a human spermatozoon with V ≈ 200µm s−1 and L ≈ 50µm moves with Re ≈ .10−2. At these

low values of the Reynolds number, it is justified to approximate Re ≈ 0, for which Equation (1) is

simplified to the Stokes equation

∇p = η∇2v, ∇ · v = 0. (4)

Note that Equation (4) is linear and independent of time.

2.2 New meaning of Re

At very low Reynolds numbers, the motion of swimming microorganisms is dominated by viscous

forces, while inertial effects are negligible. Consider a microorganism of massm and size L swimming

at velocity V in a Newtonian fluid of density ρ and viscosity η. When it stops moving, it is slowed

down according to Newton’s second law and eventually comes to a standstill. Since the drag force at

low Reynolds number is given by fdrag = ma and the fact that the drag force at low Reynolds number

is purely viscous, fdrag = −ηV L, a = −V Lη
m follows. Assuming a constant deceleration and an

approximate swimmer density of ρs =
m
L3 , the coasting distance is d = −V 2

2a = ρsV L2

2η = ReLρs
ρ . Since

ρs ≈ ρ is typical, the Reynolds number has a nice interpretation: It represents the dimensionless

coasting distance of a swimmer. For a human sperm cell, with Re ∼ 10−2, the stopping distance is

approximately d
L = 10−2, which means that the sperm cell comes to a standstill almost immediately

after it has stopped moving. In contrast, a human swimmer continues to swim at a high Reynolds

number due to the dominance of inertial effects. This illustrates a fundamental property of the Stokes

flow: the reaction of the fluid to the boundary motion of a microswimmer is virtually instantaneous.

The characteristic forces acting on the float are purely viscous and equalise at all times. Since

inertial effects disappear at Re = 0, the total force and torque on a free-swimming microorganism

must fulfil the following conditions

F = 0, M = 0. (5)

3. Rate independence and scallop theorem

The linearity and time-independence of the Stokes equation (4) are the main causes of two other

properties. If we scale the speed and rotation rate of the microswimmer V −→ αV , Ω −→ αΩ, then

by linearity the flow surrounding the body and the pressure scale with the same factor v −→ αv and

p −→ αp. The instantaneous streamlines remain identical and forces and torques also experience a

similar linear scaling F −→ αF and M −→ αM . If we were to set α = −1, the force F and the

flow v would change direction, while the flow patterns would remain identical. This postulates the

rate independence. If a body undergoes a surface deformation, the distance travelled between two

deformations depends only on the sequence of the shapes between two configurations, but not on

the rate at which the surface deformation occurs.

The second property is the scallop theorem, which states that if the sequence of shapes displayed

by the swimmer is identical in reverse time, the swimmer cannot move on average. A good example

of this is a scallop. A scallop swims in such a way that it opens its shell slowly and closes it again

quickly, squirting out water in the process. At a low Reynolds number, a scallop could not swim,

but it has only one valve and with only one degree of freedom in configuration space, it is forced to

move back and forth. The simplest animal that could swim in such a fluid is an animal with two

hinges, as seen in Figure 1 [1].

Matrika 12 (2025) 2 3
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Figure 1. The swimming stroke of a scallop: This swimmer consists of two legs connected by a joint and is immersed
in a viscous liquid. As the angle between the two legs changes periodically, the swimmer will move back and forth. Its
net displacement, however, will be zero in the zero-Reynolds-number limit, since the swimming stroke is reciprocal.
Opening the valves slowly and closing them fast is useless. Taken from Ref. [8].

4. Model of squirmer

The squirmer model is one of the canonical models for swimming with low Reynolds numbers,

namely that of a writhing sphere. The microswimmer is subject to periodic deformation of a body

with small amplitudes, which effectively leads to instantaneous boundary conditions on its surface.

Depending on the boundary conditions, we can describe a classical translational swimmer or a

squirmer with rotational motion. In our article we will focus on the former case.

4.1 Setup

Let us take the simplest example of the swimming of a spherical body with radius a. We assume

that the swimmer remains spherical but exerts an instantaneous velocity field on its surface. We

use a suitable spherical coordinate system with the origin at the centre of the sphere. We assume

that the fluid flow is axisymmetric and therefore does not depend on the azimuthal angle, i.e., ϕ
∂v
∂ϕ = 0. The other components of the boundary conditions are chosen arbitrarily. They lead to the

swimming of a spherical body with the velocity V (t)ez and in swimming frame the fluid flow at the

infinity is

v(r −→ ∞) = −V (t) cos θer + V (t) sin θeθ.

4.2 Solution for model squirmer

We can obtain the solution for a squirmer by solving the Stokes equation, i.e. Equation (4) with the

boundary conditions vr(a, θ, t) and vθ(a, θ, t). Since the velocity field in the Stokes flow is biharmonic

(∇2∇2v = 0) [5] and due to the incompressibility of the fluid ∇ · v = 0 we can write

∇2∇2 (r · v) = 0, (6)

where r is the position vector; r = rer. The radial component of the boundary condition is

contained in this equation itself. If vr is determined, vθ can be found using incompressibility by

explicitly integrating ∇ · v = 0:

1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(vθ sin θ) = 0.

To obtain all solutions of the Equation (6), we use general axisymmetric solutions of Laplace’s

equation ∇2Φ = 0, which are Φ ∼ rnPn(cos θ) and Φ ∼ r−1−nPn(cos θ), where Pn is the Legendre

polynomial of the n-th order [9]. To find the solution to the Equation (6), we need to solve

∇2 (rvr) ∼ rnPn(cos θ), or ∇2 (rvr) ∼ r−1−nPn(cos θ).

Given the form of the right-hand side, we can solve the differential equation with separation of

variables and look for a solution of the form vr(r, θ) = f(r)Pn(cos θ). In the homogeneous part, the
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decaying solutions, denoted by ṽn, are (since the velocity field should vanish at infinity) given by

ṽn,r =
1

rn+2
Pn(cos θ), ṽn,θ =

n

2rn+2
Vn(θ), n ≥ 0, (7)

where Vn is defined as

Vn(θ) =
2

sin θ

∫ 1

cos θ
Pn(u) du =

2

n(n+ 1)
P ′
n(cos θ) sin θ, (8)

and where prime (′) denotes the derivative with respect to argument in the Legendre polynomials.

The last equality is a consequence of the fact that the Legendre polynomial fulfils the Legendre

differential equation [5]. The particular solution of the Equation (6) is, up to multiplicative factors,

which are irrelevant due to linearity, given by

v̄n,r =
1

rn
Pn(cos θ), v̄n,θ =

1

rn

(n
2
− 1

)
Vn(cos θ), n ≥ 1. (9)

4.2.1 General solution

In addition to the decaying homogeneous and particular solution, the constant velocity v̂ = ez is

also a solution with the components

v̂r = cos θ, v̂θ = − sin θ. (10)

The solution of the Stokes flow can now be calculated exactly. The functions Pn and Vn provide a

natural basis for the radial and polar components of the boundary conditions. We can write

vr(a, θ, t) =
∑
n≥0

An(t)Pn(cos θ), vθ(a, θ, t) =
∑
n≥0

Bn(t)Vn(θ). (11)

If the angular dependence of the boundary conditions is given in a different form than in Equation

(11), Equation (11) can be inverted using standard orthogonality formulae for Legendre polynomials

and the coefficients explicitly written as [5]

An(t) =
2n+ 1

2

∫ π

0
vr(a, θ, t)Pn(cos θ) sin θ dθ,

Bn(t) =
1

8
n(n+ 1)(2n+ 1)

∫ π

0
vθ(a, θ, t)Vn(θ) sin θ dθ.

The general form of the total solution is the linear superposition of all solutions given in the Equa-

tions (7), (9) and (10), so

v =
∑
n≥0

αna
n+2ṽn +

∑
n≥1

βna
nv̄n + Γv̂. (12)

Note that the coefficients αn, βn, Γ generally depend on time, but for simplicity we will leave the

time dependence implicit. Using the boundary conditions from Equation (11), the values of the

coefficients in Equation (12) can be calculated as [5]

Γ = −V,

α0 = A0,

α1 =
1

2
(2B1 +A1 − V ) ,

β1 =
1

2
(A1 − 2B1 + 3V ) ,

αn =
(
1− n

2

)
An +Bn, (n ≥ 2),

βn =
n

2
An −Bn, (n ≥ 2).
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Using the fact that P0 = 1, P1(cos θ) = cos θ and V1(θ) = sin θ, the complete solution for instante-

neous flow components in the swimming frame can be written as

vr(r, θ) =− V P1 +A0

(a
r

)2

+
1

2
(2B1 +A1 − V )

(a
r

)3
P1 +

1

2
(A1 − 2B1 + 3V )

a

r
P1

+
∑
n≥2

An

[
n

2

(a
r

)n
+
(
1− n

2

)(a
r

)n+2
]
Pn

+
∑
n≥2

Bn

[(a
r

)n+2
−
(a
r

)n
]
Pn,

(13)

vθ(r, θ) =V V1

+
1

4
(2B1 +A1 − V )

(a
r

)3
V1 −

1

4
(A1 − 2B1 + 3V )

a

r
V1

+
∑
n≥2

n

2

(n
2
− 1

)
An

[(a
r

)n
−
(a
r

)n+2
]
Vn

+
∑
n≥2

Bn

[
n

2

(a
r

)n+2
+
(
1− n

2

)(a
r

)n
]
Vn,

where Pn and Vn denote angular functions Pn(cos θ) and Vn(θ) respectively. Note that the term

with A0 in Equation (13) represents a source or a sink of the liquid within a sphere. For reasons of

volume conservation of the swimmer, we set A0 = 0.

4.3 Velocity of a squirmer

4.3.1 From general solution

We have obtained the full general solution for the Stokes flow with all required boundary conditions,

but the swimming velocity V remains undetermined. The terms in the full solution that decay with
1
r actually correspond to the net force acting on the fluid. More precisely, a point force Fez applied

in the origin instantaneously generates a flow called the Stokeslet [6] with the components

vr =
2F

r
P1, vθ = −F

r
V1,

which correspond to terms in our solution that decay with 1
r . Since a squirmer moves without a

net force (it must remain force-free according to Equation (5)), these terms must be set to zero,

A1 − 2B1 + 3V = 0, and the swimming speed is thus given by

V =
1

3
(2B1 −A1) . (14)

As a result, the general solution simplifies to

vr(r, θ) =− 1

3
(2B1 −A1)P1 +

2

3
(A1 +B1)

(a
r

)3
P1

+
∑
n≥2

An

[
n

2

(a
r

)n
+
(
1− n

2

)(a
r

)n+2
]
Pn

+
∑
n≥2

Bn

[(a
r

)n+2
−
(a
r

)n
]
Pn,
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vθ(r, θ) =
1

3
(2B1 −A1)V1 +

1

3
(A1 +B1)

(a
r

)3
V1

+
∑
n≥2

n

2

(n
2
− 1

)
An

[(a
r

)n
−
(a
r

)n+2
]
Vn

+
∑
n≥2

Bn

[
n

2

(a
r

)n+2
+
(
1− n

2

)(a
r

)n
]
Vn.

4.3.2 From Lorentz reciprocal theorem

In order to derive the velocity of a squirmer, we had to find a general solution for the entire Stokes

flow. Stone and Samuel [10] were able to derive analytical expression relating the translational and

rotational velocities of a swimmer to its arbitrary surface profile without having to solve for the

entire flow field. This property of a Stokes flow is called Lorentz reciprocal theorem. Consider a

volume of fluid V , bounded by a surface S with outward normal n. The solution of Equation (4)

is v (velocity of a squirmer), but here we introduce an auxiliary problem that is essential for the

derivation of the reciprocal theorem. In this case, the auxiliary problem is the translation of a rigid

sphere by an external force with velocity v̂, which is also the solution of Equation (4), and fulfils

the same boundary conditions at infinity. If the stress fields of the two flows are σ and σ̂, then the

reciprocal theorem states that: ∫
S
n · σ̂ · v dS =

∫
S
n · σ · v̂ dS.

With our definition of an auxiliary problem (a translating sphere) we know the velocity of this

sphere (v̂ = V̂ ). Since the velocity does not depend on the surface, we can remove it from the

integration so that we can use ∫
S
n · σ̂ · v dS =

∫
S
(n · σ dS) · V̂ . (15)

We recognize the term in the brackets as the force exerted on the body, but since free swimming

occurs with no net force, as indicated in Equation (5), we know that this term is zero and the

right-hand side of the equation should disappear,
∫
S n · σ dS = 0. The Equation (15) simply

becomes ∫
S
n · σ̂ · v dS = 0. (16)

The surface velocity of an original squirmer problem is then decomposed into the unknown trans-

lational squirmer velocity V and the arbitrary surface squirming motion v′ so that v(S) = V + v′.

With these boundary conditions, Equation (16) can be rewritten as(∫
S
n · σ̂ dS

)
· V = −

∫
S
n · σ̂ · v′ dS. (17)

To determine translational velocity of a squirmer, we need to evaluate both integrals. To solve them,

some knowledge of the auxiliary stress field is required. As can be seen in Equation (3), the integral

on the left-hand side represents the Stokes drag force of a rigid sphere, which can be expressed as

F̂ =
∫
S n · σ̂ dS = −6πηaV̂ . In particular, for a sphere with the radius a, the surface stress is

n · σ̂ = −3η
2a V̂ [10]. It follows that Equation (17) becomes

−6πηaV̂ · V =
3η

2a
V̂ ·

∫
S
v′ dS,

Matrika 12 (2025) 2 7
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which finally gives us a formula for the velocity of a squirmer

V = − 1

4πa2

∫
S
v′ dS. (18)

Note that we have obtained the swimming velocity of a squirmer V as a simple surface integral

of its surface motion v′, without actually solving for the flow field around the swimmer. However,

some knowledge of an auxiliary stress field is required, which means that flow calculations had to

be performed at some point. The Equation (18) is not only valid for a stationary Stokes flow, but

also applies to time-dependent cases in which v′ then represents the instantaneous surface velocity.

The mean swimming velocity then corresponds to the time average of the equation.

Above, we have written a formula for the velocity of a squirmer based only on the velocity at the

surface of the swimmer. Let us evaluate it. By assuming spherical shape of a squirmer with radius

a, we write dS = a2 sin θ dθ dϕ. It is also known that the surface velocity is axisymmetric and does

not depend on ϕ, i.e. dS = 2πa2 sin θ dθ. Due to the axisymmetry, the velocity is expected to be

directed along the z axis, so we also project the Equation (18) onto the z axis to obtain an integral

for the swimming velocity V as

V = −1

2

∫ π

0
v′(a, θ)ez sin θ dθ, (19)

where the surface velocity v′ is given by the boundary conditions in Equation (11). If we insert

Equation (11) into Equation (19) and v′ez = vr cos θ − vθ sin θ, we get

V =
1

2

∑
n≥1

Bn

∫ π

0
sin2 θVn(θ) dθ −

1

2
An

∫ π

0
sin θ cos θPn(cos θ) dθ. (20)

Using the orthonogality property of the Legendre polynomials [5] and considering the definition of

Vn from Equation (8) together with the fact that P1 = cos θ, we see that all integrals in Equation

(20) vanish except for the terms n = 1, which leads us to

V =
1

2
B1

∫ π

0
sin3 θ dθ − 1

2
A1

∫ π

0
sin θ cos2 θθ dθ =

1

3
(2B1 −A1) ,

which corresponds to the velocity we obtained from the full solution of the Stokes flow – Equation

(14). Note that the velocity depends on the first mode of each surface velocity component in the

boundary condition defined in Equation (11), but not on the viscosity of the fluid, since thrust and

drag scale linearly at Re ≈ 0 [11].

4.4 Pusher – puller

We introduce a reduced-order squirmer with the assumption that the surface deforms uniformly and

only in the tangential direction (An = 0 and Bn = constant). Furthermore, we assume Bn = 0 for

n ≥ 3, since B1 and B2 already capture the essential and dominant feature of the free-swimming

squirmer, so that the surface velocity is [4]

vS(θ) = B1 sin θ +B2 sin θ cos θ.

The first term is solely responsible for the propulsion (since An = 0), V = 2
3B1, and generates an

irrotational velocity field, that decays with 1
r3
. In the laboratory frame, the velocity field generated

by the term B1 is therefore

vB1(r, θ) =
a3

3r3
B1 (2 cos θer + sin θeθ) ,
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which physically corresponds to the potential source dipole in the Stokes flow (where the Reynolds

number is effectively zero). The term with B2 generates a velocity field

vB2(r, θ) = −B2a
2

4r2
(1 + 3 cos 2θ)er +

B2a
4

4r4
[(1 + 3 cos 2θ)er + 2 sin 2θeθ] .

This velocity field is called the Stresslet and describes how squirmer moves the fluid without applying

a net force. Its lowest decaying term decays as 1
r2
. A velocity field generated exclusively by the B1

mode corresponds to a potential dipole. In contrast, the B2 mode generates a Stokes dipole flow that

decays with 1
r2

and is characterised by a purely radial movement. Negative values of B2 correspond

to inward-directed dipoles, while positive values correspond to outward-directed dipoles. A positive

dipole represents two opposing forces pushing away from each other, whereas a negative dipole has

forces pulling toward each other. These force dipoles do not exert a net force on the surrounding

fluid. To characterise the swimming mechanism more generally, we introduce the squirmer parameter

β, defined as β = B2
B1

, where B1 is always positive. This parameter distinguishes between two types

of swimmers: pushers (β < 0) and pullers (β > 0). Pushers, such as E. coli and flagellated sperm,

generate thrust from behind, expelling fluid along their swimming direction while drawing it in from

the sides. Pullers, such as Chlamydomonas, rely on thrust from the front, attracting fluid along their

swimming axis and expelling it laterally. When both B1 and B2 modes are present, the total flow

field combines propulsion with the characteristic dipolar signature, producing the distinct patterns

associated with pushers and pullers.

Figure 2. Picture of two swimmers relying on two different mechanisms. Puller (upper) generate thrust in front of
them in direction of swimming, pusher (lower) generate thrust behind them. Squirmers are force-free swimmers since
thrust and drag effectively cancel each other out. Taken from Ref. [12].

5. Motion of a single squirmer near a wall

In this section, we analyse the movement of a single squirmer near a no-slip boundary. The squirmer

is considered at a distance h from the wall, with an orientation angle α. The wall is located at y = 0,

and the squirmer moves in the x-y plane. Numerical simulations reported in Ref. [13] show that

when a squirmer approaches a wall it first collides with the boundary and then moves along it for

a certain period of time, the so-called contact time, before eventually swimming away. The contact

time is found to decrease with increasing squirmer parameter β. Based on the results of Ref. [13],

three distinct swimming behaviours can be identified depending on β:

1. For β ≤ 1, the squirmer escapes from the wall at a positive angle.

2. For 2 ≤ β ≤ 5, the squirmer oscillates near the boundary before eventually settling into a

stable parallel trajectory at a fixed distance. Cases with β = 4.5 exhibit weak damping,

leading to persistent oscillations.

3. For β ≥ 7, the squirmer follows a cyclical trajectory and repeatedly bounces off the wall. The

oscillation amplitude remains small in relation to the wavelength.
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Furthermore, Ref. [13] shows that for squirmers that eventually move away from the wall (β ≤ 1),

the steady-state swimming speed decreases as β increases. This is consistent with analytical results

for inertial squirmers in unconfined regions [14]. In contrast, pullers (β > 2) tend to remain close

to the wall, with their swimming speed increasing with increasing β. Swimming along boundaries

is particularly important for certain microswimmers, such as spermatozoa, whose pusher-like flow

fields (β < 0) stabilise motion near walls without leading to the kind of trapping behaviour observed

for pullers [15].

6. Comparison with experiment: Volvox

To conclude this article, we compare the theoretical predictions of the squirmer model with exper-

imental observations. We focus on the green alga Volvox carteri, a multicellular, almost spherical

organism that serves as a model system in biological hydrodynamics. The surface of Volvox car-

teri is covered with thousands of small somatic cells, each carrying a pair of flagella that protrude

into the surrounding fluid. These flagella beat in a coordinated manner, creating a fluid flow and

propelling the organism. In reality, Volvox appears as a nearly spherical colony, with the flagel-

lated cells evenly distributed on its surface. Experimental measurements of the time-averaged flow

generated by the flagella, carried out using particle image velocimetry, show that when the alga is

held in place by a pipette the surrounding flow resembles that of the squirmer model described in

Sections 4.2–4.3. Because the organism is not free-swimming but fixed, it exerts a net force on the

fluid, which gives rise to a long-range 1/r decay mode in the velocity field. If both the force and

Stresslet contributions are included and higher-order terms neglected, the velocity components of

the squirmer model take the form:

vr(r, θ) = B1

[(a
r

)3
− a

r

]
cos θ +

B2

2

[(a
r

)4
−
(a
r

)2
] (

3 cos2 θ − 1
)
,

vθ(r, θ) =
B1

2

[(a
r

)3
+

a

r

]
sin θ +B2

[(a
r

)4
]
sin θ cos θ.

A best-fit analysis between the experimental velocity field and the theoretical prediction indicates

that the optimal value of the squirmer parameter is β = 0.1. This two-mode squirmer model

reproduces the key experimental features: a slight asymmetry of the flow from front to back, the

strongest velocities located near the equator of the colony, and the overall structure of the flow

induced by the flagellar beating on the spherical surface of the alga.

7. Conclusion

Through the squirmer model, we have gained valuable insights into the basic principles of microswim-

mer locomotion at low Reynolds numbers. We have explored how self-propulsion arises from surface

distortions, how different types of motion define pushers and pullers, and how these swimmers in-

teract with boundaries. Importantly, the model captures key features of real biological systems,

such as Volvox carteri, and provides predictions that are consistent with experimental observations.

The squirmer model effectively bridges theory and biology, and provides a powerful framework for

understanding and predicting the behaviour of microswimmers in complex fluid environments.
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