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PROBING THE STANDARD MODEL AND BEYOND THROUGH h → γγ DECAY

LARA KRAŠOVEC

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

This paper explores the decay of the Higgs boson in the diphoton decay channel as a probe for the Standard
Model and potential Beyond Standard Model phenomena. An outline of the Higgs mechanism in the context of the
electroweak theory is presented, followed by the computation of the SM Higgs boson decay width using dimensional
regularization and Passarino-Veltman reduction implemented through Package-X. Additional contributions of charged
scalars arising in various BSM theories are considered. Using recent experimental measurement of the diphoton
signal strength, constraints are placed on the parameters of singly and doubly charged Higgses. The fit shows a mild
preference for nonzero negative couplings at the 1σ level, which is not statistically significant.

RAZISKOVANJE (ONKRAJ) STANDARDNEGA MODELA PREK RAZPADA h → γγ

Članek obravnava razpad Higgsovega bozona v dva fotona in njegovo vlogo pri iskanju procesov onkraj Stan-
dardnega modela. Predstavljen je Higgsov mehanizem v kontekstu elektrošibke teorije. Sledi izračun razpadne širine
Higgsovega bozona v Standardnem modelu z uporabo Package-X, ki sloni na dimenzacijski regularizaciji in Passarino-
Veltman redukciji. Dodatno so obravnavani prispevki procesov, ki vključujejo nabite skalarje, prisotne v razširitvah
Standardnega modela. Na podlagi eksperimentalnih podatkov so določene omejitve parametrov enojno in dvojno
nabitih skalarjev, pri čemer je opazna težnja k negativnim sklopitvam pri 1σ, kar pa ni statistično signifikantno.
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1 Introduction

The development of the quantum field theory in the first half of the 20th century led to the formula-

tion of a remarkably successful description of the interactions among the elementary particles – the

Standard model (SM). The gradual building of this theoretical framework spanned more than three

decades, with the need for stringent tests of its predictions being to this day the main objective of

many collaborations in experimental particle physics.

The theoretical description of the weak force and its unification with electromagnetism was

perhaps the most demanding, both because of the parity-violating nature of the weak interaction as

well as due to the mathematical challenge of formulating a theory with massive vector bosons. The

solution – the celebrated Higgs mechanism – was proposed in 1964 by Higgs [1], Brout and Englert

[2], as well as Guralnik, Hagel and Kibble [3]. In 1967, this enabled Weinberg [4] and Salam [5],

who continued the work of Glashow [6], to develop the electroweak theory, which was in 1971 proved

by t’Hooft and Veltman [7] to be renormalizable, that is, giving finite results.

Besides the W and Z bosons, discovered in 1983, the electroweak theory predicted the existence

of a neutral scalar particle – the Higgs boson, which prompted the construction of CERN’s Large

Hadron Collider (LHC). Its discovery was announced in 2012 [8, 9], thus establishing the SM as the

fundamental theory of nature. The particle content of the SM is presented in Figure 1.
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Despite its success, the Standard model fails to explain certain observations, such as the presence

of dark matter, and predicts massless neutrinos, while experiments have shown evidence for non-

zero masses. Moreover, some theoretical considerations hint at the need for the unification of the

forces. It is generally believed that the SM is not the final theory of fundamental particles and there

exists physics beyond it. There is a plethora of theoretical frameworks that address the difficulties

mentioned earlier, which usually requires the introduction of new particles. These could be detected

directly by observing their decays or indirectly by noticing their effects in scatterings or decays of

known SM particles. In particular, some of the theorised beyond Standard model (BSM) particles

could couple to the SM Higgs boson and contribute to its decay width.

Figure 1: The Standard model of particle
physics describes fermions – spin 1/2 parti-
cles that make up matter – and bosons with
integer spin. Fermions are divided into
three generations of quarks which come in
three colors and three generations of lep-
tons [10]. Gauge bosons are vector (spin 1)
particles that mediate interactions. An im-
portant piece of the puzzle that was added
to the model after having been experimen-
tally confirmed in 2012 is the scalar (spin
0) Higgs boson [8, 9].

Among other decay modes, the Higgs boson can decay to two photons through a loop-induced

process. Despite its small branching ratio, the diphoton decay channel played an important role in

the Higgs boson detection and has been crucial in the ensuing precision measurements, alongside

the ’golden’ four-lepton channel. Both have low backgrounds and allow for excellent resolution [11].

The diphoton decay channel is of significant importance not only because of its clean signature

but also due to its sensitivity to BSM corrections. As the process does not occur at tree level it is

possible to consider theorised new particles entering the loop and having observable consequences.

We begin with a brief introduction to some key aspects of group theory, quantum field theory and

gauge fields, followed by an explicit theoretical discussion of the electroweak theory in the Standard

model. After listing the relevant Feynman rules, we use those to obtain the SM prediction for the

h→ γγ decay width. Following a slight experimental aside, we compute hypothetical contributions

of charged scalars to the decay width and use experimental data to constrain the parameters of such

BSM models. For readers interested in a more rigorous treatment of the electroweak theory, as well

as the technical details of the decay width computation, these are available in the appendices.

2 Gauge symmetries

2.1 Brief overview of symmetries and groups

The symmetry of a particular system can be considered in the context of its symmetry group – the

group of all transformations under which the system remains invariant. Since symmetries play a

key role in describing high-energy physics phenomena, we will rely on some basics of group theory

throughout this article. In our ensuing discussion we will limit ourselves to continuous symmetries,

which are described by Lie groups, parametrized by a continuous parameter. A general transforma-

tion of a field χ under a Lie group can be written as χ→ χ′ = eiϵaT
a
χ , where εa are the continuous

group parameters and T a are the generators. The latter form a basis of the Lie algebra of the group
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and satisfy the commutation relation: [T a, T b] = ifabcT
c , with fabc as the structure constants [12].

Global and local symmetries. In the case of local symmetries, the parameters are functions of coor-

dinates; ε = ε(xµ), whereas global symmetries act the same at each spacetime point; ε ̸= ε(xµ) [13].

Abelian and non-abelian groups. For a group to be considered abelian all of its elements must

commute. One example we will encounter is the group of phase rotations U(1) which transform a

field χ as: χ→ eiεχ , where ε is a real continuous parameter. Elements of non-abelian groups are in

general non-commutative. Such is the special unitary group SU(n), which is the group of all n× n

unitary matrices with determinant 1 (hence ’special’). The group SU(n) has n2 − 1 generators for

reasons related to the unitarity constraint [12].

Group representations. Transformation under a given symmetry group can be written as χ′ = Uχ,

where U is a matrix realization of a group element acting on χ and is called a representation of

the group [13]. Different fields χ can transform under different representations of the same group.

For example, the adjoint representation tells us how the group acts on its own Lie algebra. The

fundamental representation, on the other hand, is the most basic irreducible representation. For

SU(n) it is n-dimensional and acts on n-dimensional complex vectors [12].

2.2 Quantum field theory and the Standard model

Our main focus will be on the interactions among elementary particles. These are described by their

respective quantum fields and treated in the context of quantum field theory (QFT).

A system is described by its Lagrangian density, which is in a field theory a function of fields

and their derivatives: L(χ, ∂µχ). Here four space-time derivatives are combined into ∂µ = (∂t, ∇⃗)

to allow for Lorentz invariance of the theory. Corresponding equations of motion are derived by

varying the action S =
´
dx4L.

The particles in the Standard model (SM) are presented in Figure 1. Lagrangians of non-

interacting scalar (ϕ), fermion (ψ) and vector (Bµ) fields are listed below:

• R scalar : L =
1

2
(∂µϕ) (∂

µϕ)− 1

2
m2ϕϕ ,

• C scalar : L = (∂µϕ) (∂
µϕ∗)−m2ϕϕ∗ ,

• R vector : L = −1

4
FµνF

µν +
1

2
m2BµBµ ,

• fermion : L = ψ̄i/∂ψ −mψ̄ψ .
(1)

We introduced the Feynman slash notation: /∂ = γµ∂µ, where γ
µ are the Dirac γ matrices. The

field strength tensor Fµν will be defined in the next section. The terms quadratic in fields which

include derivatives are kinetic and those that do not are the mass terms. These are the free field

Lagrangians and do not contain interaction terms.

Here, fields were introduced as complex-valued functions of space-time coordinates, following the

classical field theory approach. In the full quantum field theory, these classical fields are promoted

to operators with canonical commutation relations, and particles emerge as discrete excitations of

these quantized fields with specific energy eigenvalues.

2.3 Introduction to gauge theories

In the Standard model, every fundamental interaction arises from requiring that the Lagrangian

remains invariant under local transformations. This gauge invariance can only be achieved by the

introduction of spin-1 gauge fields, which mediate the forces. Without gauge invariance, a theory

becomes nonrenormalizable [14], meaning the infinities which arise in the calculations cannot be
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cancelled out, thereby stripping the theory of its consistency.

Abelian gauge theories: U(1) example. Let us first consider a theory of a free complex scalar field

ϕ. It is described by the Lagrangian given in (1), which is manifestly invariant under global U(1)

transformations. It is not invariant under local U(1) transformations, however, as derivatives in

the first term act on the spacetime-dependent parameter ε(xµ). To achieve gauge invariance we

introduce a gauge-covariant derivative Dµ, defined by:

Dµϕ = (∂µ − ieAµ)ϕ , (2)

where Aµ is a gauge field which transforms as:
Aµ → Aµ +

1

e
∂µε . (3)

After promoting the derivatives ∂µ in the Lagrangian (9) to the gauge-covariant derivative defined

earlier, all of the terms that arise because of the spacetime-dependence of ε cancel out and such

a Lagrangian has a local U(1) invariance. In addition, the theory now contains a gauge field Aµ,

which is coupled to the scalar field. We have therefore generated interactions.

Non-abelian gauge theories: SU(2) example. The concept of gauge invariance can be extended to

non-abelian gauge groups. If a complex scalar field ϕ transforms under a certain representation of

SU(2) as ϕ(x) → ω(x)ϕ(x), then gauge invariance of the Lagrangian is again achieved by introducing

the covariant derivative like we did in (2), except that now Aµ transforms as Aµ → A′
µ = ωAµω

−1+

ω∂µω
−1 and is matrix-valued. It can then be written in the basis of the group generators in

the appropriate representation: Aµ =
∑

a T
aAaµ [13], where we denoted by Aaµ a number-valued

field associated with the generator T a. In all future instances the sum over repeated indices will be

omitted. For the fundamental representation of SU(2), the generators are normalized Pauli matrices:

T a = σa/2, which means we can write the covariant derivative as:

Dµϕ =

(
∂µ − ig

σa

2
Aaµ

)
ϕ . (4)

When introducing a new field into the theory we must also include its kinetic term, written as:

Lgauge, kinetic = −1

4
F aµνF

µν
a , F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (5)

In the case of abelian gauge groups, the structural constants are zero, hence the third term in the

definition of Fµν vanishes. For non-abelian gauge fields, however, the presence of this term leads

to triple and quartic self-interactions of the fields. For SU(2), the structural constants fabc are the

components of the Levi-Civita symbol εabc.

Moreover, a mass term for the gauge fields is prohibited by the gauge invariance. Considering

again the abelian example, a mass term is not invariant under the U(1) transformations:

1

2
m2
AAµA

µ −→ 1

2
m2
A

(
Aµ +

1

e
∂µε

)(
Aµ +

1

e
∂µε

)
̸= 1

2
m2
AAµA

µ , (6)

and therefore cannot be included ad hoc in a gauge-invariant Lagrangian. However, some of the

gauge bosons in the Standard model are massive. A fascinating solution to this problem lies in the

spontaneous breaking of the gauge symmetry through the Higgs mechanism.

2.4 Spontaneous symmetry breaking (SSB)

Consider a Lagrangian, invariant under some symmetry group, with a kinetic part T and a potential

V : L = T − V . If terms that violate the invariance are added to the Lagrangian, the symmetry

becomes only approximate. This is known as explicit breaking.
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On the other hand, if L is invariant under the symmetry and the minimum of the potential, i.e.

the vacuum, does not respect the symmetry of the Lagrangian, its symmetry group can be broken

spontaneously by expanding L around the minimum. According to the Goldstone theorem, if the

spontaneously broken symmetry of a Lorentz-invariant theory is continuous and global, this results

in the appearance of massless scalar states in the spectrum of the theory – the Nambu-Goldstone

bosons (NGBs) [15], one for each spontaneously broken generator. An example of a spontaneous

breaking of a global symmetry is available in the Appendix. If the spontaneously broken symmetry

is local, however, the NGBs can be thought of as absorbed by the gauge bosons, which as a result

acquire mass [12]. This mathematical procedure is called the Higgs mechanism and will be discussed

in the following section.

3 Electroweak theory in the Standard model

We are now set to construct the proper electroweak theory of the Standard model. As the name

implies, electromagnetic and weak interactions are treated within the same unified theoretical frame-

work. In order to ensure its renormalizability, we require a certain gauge invariance of the theory,

which will have to be spontaneously broken to generate the masses of the weak bosons W± and Z.

3.1 Gauge group of the electroweak theory

For simplicity we will consider only the first generation of leptons: left- and right-handed electrons,

eL, eR, and the left-handed electron neutrino, νL. The interactions of these particles are governed

by the gauge group of the theory. In order to accommodate both self-interacting W±
µ bosons as well

as the photon field Aµ, the gauge group must consist of a non-abelian and an abelian part. A valid

choice is SU(2)⊗U(1), which has 3 + 1 = 4 generators. The explicit connection between the group

generators and the vector boson fields is not obvious and is shown in the Theoretical Appendix 7.

Since the weak interaction violates parity, fermion fields of different chirality must transform

under different representations of SU(2). We therefore take the left-handed leptons to form a SU(2)

doublet and treat the right-handed one as an SU(2) singlet:(
νL
eL

)
, eR .

From now on, the SU(2) part of the gauge group will be denoted as SU(2)L to convey this informa-

tion. Transformations of the fields under U(1) are indicated by their U(1) quantum number – weak

hypercharge Y . The gauge group of the electroweak theory is then written as:

SU(2)L ⊗U(1)Y . (7)

3.2 Spontaneous symmetry breaking: the Higgs mechanism

Besides fermions and gauge fields we want the theory to also include scalar fields with a potential

that allows for SSB (see Appendix 7). More specifically, we need to break both the SU(2)L and

U(1)Y parts of the gauge group. This is achieved by introducing scalars that transform non-trivially

under both groups. The simplest option is a doublet of two complex scalar fields ϕ1 and ϕ2:

ϕ =

(
ϕ1
ϕ2

)
, (8)

with hypercharge Yϕ = 1/2, as derived in Appendix 7. We now write the gauge-invariant Lagrangian

for the scalar part of the theory:
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LHiggs = (Dµϕ)
† (Dµϕ)− V (ϕ) , V (ϕ) = −µ2ϕ†ϕ+ λ

(
ϕ†ϕ

)2
, µ2, λ > 0 . (9)

It follows from Section 2.3 that gauge invariance is ensured by defining the covariant derivative as:

Dµϕ =
(
∂µ + igT aW a

µ + ig′YϕBµ
)
ϕ , (10)

where T a are the three generators of SU(2)L, W
a
µ are the real number-valued gauge fields associated

with them, while Bµ corresponds to the U(1)Y gauge field. We introduced two coupling constants,

g and g′, as well as the U(1)Y quantum number of the scalar doublet, Yϕ. Differentiating V (ϕ) with

respect to ϕ1 and ϕ2, we obtain the following condition for the possible minima:

|ϕ1|2 + |ϕ2|2 =
1

2
v2 , v2 =

µ2

λ
. (11)

Choosing one of the solutions and expanding the scalar fields around it, we get:

⟨ϕ⟩ =
(
⟨ϕ1⟩
⟨ϕ2⟩

)
=

(
0
v√
2

)
−→ ϕ = ⟨ϕ⟩+

(
w+

1√
2
(h+ iz)

)
=

(
w+

1√
2
(v + h+ iz)

)
, (12)

where w+ is the perturbation around the vev of ϕ1, while (h+iz)/
√
2 is the perturbation around the

vev of ϕ2, split into its real and imaginary parts denoted by relatively suggestive notation. Fields

z, w+ and its complex conjugate w− are the would-be Goldstone bosons [16], which are unphysical

and can be shown to be absorbed by the massive gauge bosons by fixing an appropriate gauge [12].

The theory predicts the existence of a massive neutral scalar h – the Higgs boson. After inserting

the expansion of ϕ as defined in Equation (12) into the Lagrangian (9), its initial symmetry is

spontaneously broken and we obtain appropriate mass terms for the weak bosons. The interesting

intricacies of the electroweak SSB, including the derivation of the mass terms and the pattern of

the SSB, are discussed in the Theoretical Appendix 7, which the reader is kindly encouraged to

consider.

3.3 Feynman rules for the electroweak theory

So far, we have only discussed the first term of the electroweak Lagrangian, LHiggs, given in Equation

(9). The entire electroweak theory, however, can be separated into the following sectors [17]:

LEW
SM = LHiggs + Lpure

gauge + Lpure
fermion + LYukawa + Lgf + Lghost. (13)

We are mainly concerned with the calculation of the h → γγ decay. The electroweak Lagrangian

contains instructions for that in the form of particle couplings and propagators – the Feynman

rules, which are collected in Summary 3.1. Some further remarks on their derivation are provided

in Appendix 7.

When quantizing gauge theories, redundant field configurations stemming from the gauge in-

variance must be removed by introducing the gauge-fixing terms [12]. This allows us to properly

derive the propagators, which consequently depend on an arbitrary gauge parameter ξ, as seen in

3.1. Our calculation of h → γγ decay will be performed in the unitary gauge, obtained by setting

ξ → ∞. In this limit, the unphysical degrees of freedom, such as the would-be Goldstones, are

eliminated, which simplifies the calculation significantly. The W boson propagator defined in 3.1

then becomes:

PropW =
−i

p2 −m2
W

(
gµν −

pµpν
m2
W

)
. (14)
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Summary 3.1. Summary of relevant vertices and propagators. A more comprehensive
collection of the Feynman rules can be found in [17].

Higgs interactions

h

W∓

W±

igmW gµν h

f

f

−ig
2

mf

mW

Gauge - fermion interactions

γ

f

f

−ieQfγµ

Gauge - gauge interactions

q

p−

p+

Aµ

W−
σ

W+
ρ

−ie (gσρ (p− − p+) + gρµ (p+ − q) + gµσ (q − p−))

Propagators

Propf =
i
(
/p+mf

)
p2 −m2

f

f

−ie2 (2gσρgµν − gσµgρν − gσνgρµ)
Aµ Aν

W+
σ W−

ρ

PropW =
−i

p2 −m2
W

(
gµν − (1− ξW )

pµpν
p2 − ξWm2

W

)
Wµ ν

4 Testing the electroweak theory

4.1 Experimental measurement

Since its detection in 2012, the properties of the Higgs boson have been studied extensively by

ATLAS and CMS Collaborations [18, 11]. Higges are produced in proton-proton collisions predom-

inantly through gluon fusion involving a top quark loop. The SM lifetime is τh ≈ 1.6 · 10−22 s,

meaning the Higgs boson decays rapidly into lighter states. The branching fractions of the decay

channels are visualized in figure 2b. Although the h → γγ is a relatively rare decay, it was one of

the main discovery channels, the other being the ’golden’ four-lepton channel, with an even smaller

branching ratio. The reason lies in their extremely clean signatures with low background.

Unlike for the dominant bb channel with overwhelming quark background from QCD processes,

the only background for the diphoton channel comes from quark annihilation, gluon-gluon fusion

and jet or particle misidentification. This background forms a smooth distribution which can be

modelled and taken into account during data analysis. The photons are detected in electromag-

netic calorimeters, where they produce electromagnetic showers after interacting with the detector

material.

The invariant mass of the two photons is then calculated from the measured energies and their

directions of detection. The photons originating from Higgs boson decays create a bump in the

background spectrum, as seen in Figure 2a. This peak is centered at the mass of the decaying

particle and is approximately Gaussian due to the detector resolution effects, which completely

mask the true Breit-Wigner resonance shape. Current experimental value of the Higgs boson mass

obtained from such measurements is mh = 125.38± 0.14 GeV (mh = 125.17± 0.14 GeV) as found

by CMS [11] (ATLAS [18]).
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(a)

57.6%

22.0% 8.2%

6.2%

2.9%
2.7% 0.2%

h→ bb

h→ WW

h→ gg

h→ ττ

h→ cc

h→ ZZ

h→ γγ

h→ other

(b)

Figure 2: a) Diphoton invariant mass distribution with background (dotted blue line) and fit (red
line). Source: [18]. b) Branching fractions of the h decay channels. Data was obtained from [19].

4.2 Standard model predictions for h→ γγ decay width

The Higgs boson cannot couple to photons directly. Since it has zero electric charge, this can be

understood from electrodynamics. Fittingly, there are no h-γ interaction terms in the electroweak

Lagrangian. Moreover, the Higgs boson only couples to massive particles, and γ is massless.

The h → γγ decay therefore occurs at higher orders of the perturbative expansion, with the

lowest non-trivial order being at one-loop. Particles that can enter in the loop must be charged

(coupling to γ) and massive (coupling to h). In the SM, that leaves us with charged fermions and

the W boson. Higgs coupling is proportional to the mass of a particle, so we can assume the main

contributors will be the top quark and the W , with masses mt ≈ 173 GeV and mW ≈ 80 GeV [19].

k1 + k2

p−
k
1 −

k
2

p
−
k
1

p

k2

k1

h

γ

γ

(a)

k1 + k2

p− k1 − k2

p
k1

k
2

h

γ

γ

(b)

k1 + k2

p−
k
1 −

k
2

p
−
k
1

p

k2

k1

h

γ

γ

(c)

Figure 3: a), b) Feynman diagrams with indicated momentum assignements for the SM h→ γγ decay
with the W boson in the loop. We refer to the one on the left as the triangle diagram and the one
with the quartic vertex as the bubble. c) Feynman diagram with a charged fermion in the loop.

In unitary gauge, there are two Feynman diagrams involving the W boson and one diagram

corresponding to the fermion loop which contribute to the SM decay width. They are presented

in Figure 3. We can use the Feynman rules listed in Section 3.3 to write down the appropriate

amplitudes. However, there are a few other considerations to be made. The particles in the loop

are virtual or off-shell, which means they do not satisfy the classical equations of motion and can

have arbitrary momenta, as long as energy and momentum are conserved at each vertex. We must

therefore integrate over all possible loop momenta p. In general, such loop integrals are not finite

and need to be dealt with using a certain regularization method. Here, we employ dimensional

regularization, which means promoting a 4-dimensional integral to d-dimensions and evaluating it,

after which we set d = 4 − ε, where ε → 0. This helps us to isolate the divergent terms, which

cancel out after considering all of the contributing diagrams, since the observables must be finite.

For additional comments on renormalization, see Appendix 7.1.

Evaluating the loop integrals is not exactly trivial. The results were computed in Mathematica
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using Package-X [20], with the corresponding code available in Appendix 8.1. In the present section

we outline the final results, which match those in the literature [21].

Adding together the expressions for the W and the fermion amplitudes and summing over all

possible fermion states in the loop leads to the total Standard model amplitude for the h → γγ

decay at one-loop order, which can be compactly written as:

MSM = MW +
∑
f

Mf =
e2g

(4π)2mW
FSM (k1 · k2gµν − kν1k

µ
2 ) εµ(k1)εν(k2) . (15)

We defined FSM as FSM = FW +
∑

f NfQ
2
fFf with

FW = 2+ 3βW +3
(
2βW − β2W

)
f(βW ) and Ff = −2βf (1 + (1− βf )f(βf )) , βi =

4m2
i

m2
h

. (16)

Here Qf is the electric charge of the fermion in units of e and Nf is the color factor, which is 1 for

leptons and 3 for quarks. The function f(β) is defined as:

f(β) =

arcsin2
(
β−1/2

)
, β ≥ 1 ,

−1
4

(
ln 1+

√
1−β

1−
√
1−β − iπ

)2
, β < 1 .

Using the masses mh, mt and mW given earlier, and knowing Nt = 3 and Qt = 2/3 for the top

quark, we can compute the dimensionless constants FW and Ft:

FW ≈ 8.3 , Ft ≈ −1.4 → NtQ
2
tFt ≈ −1.8 . (17)

The top quark therefore interferes destructively with the W loop, which gives the dominant con-

tribution, as FW > NtQ
2
t |Ft|. After some algebra, provided in Appendix 8.1, we arrive at the SM

prediction for the h→ γγ decay width at one-loop:

ΓSM
h→γγ =

m3
hGF

8
√
2π

( α
4π

)2
|FSM|2 , (18)

where GF and α are the Fermi constant the fine-structure constant, which are defined as:

8GF√
2

=
g2

m2
W

and α =
e2

4π
. (19)

Additional terms in the perturbative expansion would be surpressed by higher powers of the coupling

constants. Expression (18) agrees with the result in [21]. We note that the divergencies cancelled

out and the observable Γ is indeed finite.

5 Search for the evidence of physics beyond the Standard model

Since it occurs at one-loop order, the h → γγ decay is especially interesting as a probe for BSM

phenomena. Many SM extensions predict the existence of additional particles that would couple

to both the Higgs boson and the photon, which means they would contribute to the process as

virtual loop states. Such are for example charged Higgs bosons, which are present in but not

limited to the following models: Type-II See-Saw [22], Left-Right Symmetric Model (LRSM) [23],

Minimal Supersymmetric Standard Model (MSSM) [24]. Typically, these additional scalars are

doubly charged at most. For the purposes of this paper, we therefore consider the contributions of

arbitrary charged scalars ∆+(+) and modify our previous results accordingly.
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γ

γ

(a)

∆+(+)

h

γ

γ

(b)

Figure 4: Feynman diagrams for the h→ γγ decay with charged scalars ∆+ or ∆++ in the loop. The
momenta assignements are identical to those in Figure 3.

5.1 Charged scalar contribution to h→ γγ decay width

To account for the effects of the hypothesized charged scalars, we evaluate the invariant amplitudes

given by two additional Feynman diagrams, shown in Figure 4. The explicit computation is available

in Appendix 8.1. When writing the total amplitude for the h → γγ decay, MSM+BSM = MSM +

MBSM, the factor FSM defined in the previous section as (16) must be replaced with:

FSM → FSM+BSM =FSM +
Ch∆∆vQ

2
∆mW

m2
∆g

F∆ , F∆ =β∆ (1− β∆f(β∆)) , (20)

which now includes the contributions of a scalar particle with mass m∆ and charge Q∆. The triple

scalar coupling in the units of vev v is denoted by Ch∆∆.

5.2 Constraining the parameters of BSM models

The contributions of a singly or doubly charged scalar ∆+(+) to Γh→γγ depend on two parameters:

the massm∆ and the dimensionless coupling Ch∆∆. Knowing the experimental values of observables,

we can determine the constraints on these parameters.

Signal strength µ is defined as the ratio of the observed events to the theoretical SM prediction.

For the h→ γγ decay, the most recent experimental value is estimated at µexp = 1.10±0.06 [19]. We

define the predicted signal strength accounting for the BSM effects, which were calculated earlier:

µpred =
ΓSM+BSM

ΓSM
. (21)

Comparing it to µexp for various combinations of parameters m∆ and Ch∆∆ using reduced χ2

statistic, we obtain the constraints on the parameter space displayed in figure 5. The doubly

charged scalar shows stronger constraints compared to the singly charged due to the Q2
∆ enhance-

ment in (20). In both cases there is a preference towards negative couplings. It is important to

emphasize that the apparent preference for nonzero Ch∆∆ does not exceed 1σ and therefore carries

no statistical significance. Current ATLAS and CMS global fits of Higgs properties report diphoton

signal strengths consistent with the SM within uncertainties [25]. As the mass of the hypothetical

scalar increases, the constraints on the coupling loosen. Brief discussion on statistics as well as

additional plots are available in the Phenomenology Appendix 8.2.

6 Conclusions

We demonstrated some of the essential features of the electroweak theory of the Standard model,

with the key ingredient being the concept of the spontaneous breaking of the gauge symmetry

– the Higgs mechanism – as the mathematical procedure which allows for the generation of the

vector boson masses. The Higgs boson, predicted by the theory, decays to two photons through

a loop-induced process with predominant contributions coming from the W boson and the top

10 Matrika 12 (2025) 2
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Figure 5: Likelihood of combinations of parameters for singly (left) and doubly charged (right) scalars
with the darkest shaded area being the most likely. The contours represent the 1σ and 2σ confidence
levels. Values outside the shaded regions can be considered excluded by experimental data.

quark. Although a rare decay, this channel presents a sensitive experimental probe into both the

SM physics, as well as the potential BSM contributions.

We computed the SM prediction for the decay width and emended it by considering additional

loop diagrams with arbitrary charged scalars. These arise in BSM models with extended Higgs sec-

tors, such as the Type-II See-Saw, the LRSM and the MSSM. The loop calculations were performed

using Package-X. The obtained results are in agreement with those found in the literature [21, 26].

Comparing the analytical expression for the signal strength of the h → γγ decay width to its

experimental value, we constrained the parameter space for the mass and the coupling of the hy-

pothesized BSM Higgses. The results show a slight preference for negative couplings at 1σ statistical

significance. This effect should not be interpreted as evidence of new physics. Rather, it illustrates

the present experimental sensitivity of the diphoton channel to possible BSM contributions.

7 Theoretical appendices

Appendix A: Additional preliminaries

Here we provide some additional comments on the concepts introduced in the main part of this

seminar, which the reader is assumed to be familar with or are not crucial for the understanding of

the subject, but can offer some informative insight.

Ad: Group representations.

• In the language of group theory, scalar, vector and fermion fields transform under different

representations of the Lorentz group.

• The gauge fields are algebra-valued, which means they transform under the adjoint represen-

tation of the gauge group.

Chirality of fermions. Chirality is an intrinsic property of a particle, which is said to be either left-

or right-handed, depending on its eigenvalue of the chirality operator. The latter is defined as the

fifth Dirac γ matrix: γ5 = iγ1γ2γ3γ4. For massless particles, chirality and helicity – projection of

spin onto the direction of its momentum – coincide. A Dirac spinor ψ can be decomposed into its

left- and right-handed components using projection operators PL and PR:

ψ = PLψ + PRψ ≡ ψL + ψR, PL,R =
1

2
(1 ∓ γ5) . (22)

Matrika 12 (2025) 2 11
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Weak interaction and parity violation. Parity transformation is defined as the reflection of spatial

coordinates: P : x⃗ → −x⃗, t → t . Under parity transformation, chirality flips the sign. Unlike

strong and electromagnetic interactions, processes induced by weak interactions are not symmetric

under such transformation. Weak interaction therefore violates parity as it couples exclusively left-

handed particles and right-handed antiparticles. Since neutrinos only interact weakly, hypothetical

right-handed neutrinos have not (yet) been observed and are not considered in the SM.

Appendix B: Spontaneous breaking of a global symmetry

We will illustrate spontaneous breaking of a global symmetry with a concrete example. The following

Lagrangian of n real scalar fields ϕi:

L =
1

2
∂µϕi∂

µϕi − V (ϕ) , V (ϕ) = −1

2
µ2(ϕi)

2 +
λ

4
(ϕi)

4 , i = 1, ..., n , (23)

is invariant under rotations among the fields ϕi: ϕi → Rijϕj , R
TR = 1, and is therefore symmetric

under the group of all orthogonal n × n matrices O(n), which has n(n − 1)/2 generators. The

potential V (ϕ) depends on two R parameters: µ2 and λ, where λ is taken to be positive in order to

ensure a lower bound for the energies of the theory [27]. For µ2 < 0, the minimum of the potential is

symmetric under rotations, which can be seen in Figure 6. For µ2 > 0, however, there are infinitely

many degenerate vacua which do not remain invariant under O(n), allowing for SSB.

Figure 6: The shape of the potential V for µ2 < 0 (left) and for µ2 > 0 (right). Source: [28].

We choose one of the minima, for example ϕ0 = (ϕ10, ..., ϕ
N
0 ) = (0, .., v), with v = µ/

√
λ as the

vacuum expectation value (vev). Expanding the fields around it, we obtain:

ϕ = (πk(x), v + σ(x)) , k = 1, ..., N − 1 , (24)

where πk and σ are the perturbations around the vacuum. The Lagrangian (23) becomes:

L =
1

2

(
∂µπ

k
)2

+
1

2
(∂µσ)

2 − µ2σ2 −
√
λµσ3 −

√
λµ
(
πk
)2
σ− λ

4
σ4 − λ

2

(
πk
)2
σ2 − λ

4

(
πk
)4

, (25)

and the initial O(n) symmetry is no longer apparent. The Lagrangian is now invariant under the

rotations among the πk fields, which means the symmetry group has been broken down to O(n−1).

The number of broken generators corresponds to the difference in the number of symmetry generators

before and after the SSB. In this case, this means: nBG = n(n − 1)/2 − (n − 1)(n − 2)/2 = n − 1,

which is precisely the number of the massless scalar fields πk that appeared in the Lagrangian and

are interpreted as the NGBs [12]. Notice that the σ field acquires a mass mσ =
√
2µ. It is also worth

noting that in a Lorentz-invariant field theory, only scalar fields can have non-zero vevs, which is

crucial for SSB.

What we have just shown was a spontaneous breaking of a global symmetry. When breaking a

local symmetry, the procedure is very similar, with the main difference being in the implications of

the resulting massless scalars. For a spontaneously broken local symmetry these would-be Goldstones

are unphysical and become the longitudinal polarizations of the massive vector bosons [12].

12 Matrika 12 (2025) 2



“output” — 2025/9/28 — 5:04 — page 13 — #13

Probing the Standard Model and Beyond through h → γγ Decay

Appendix C: Electroweak theory in the Standard model

The treatment of the electroweak theory in the main part of this article was limited to a rather

conceptual description of its construction from group theoretical considerations and the subsequent

procedure of the electroweak symmetry breaking. A more detailed analysis is available in the present

section.

Masses of the weak bosons. By using the explicit definition of SU(2) generators in terms of Pauli

matrices σa, the covariant derivative defined in (10) can be rewritten in a convenient matrix form:

Dµϕ = ∂µϕ+ iGµϕ, Gµ =
1

2

(
gW 3

µ + 2g′YϕBµ g
(
W 1
µ − iW 2

µ

)
g
(
W 1
µ + iW 2

µ

)
−gW 3

µ + 2g′YϕBµ

)
. (26)

Knowing the mass terms are quadratic in gauge fields and are not coupled to any of the scalars, we

extract them by investigating the following term:

(Gµ ⟨ϕ⟩)† (Gµ ⟨ϕ⟩) , where Gµ ⟨ϕ⟩ = v√
2

(
1
2g
(
W 1
µ − iW 2

µ

)
−1

2gW
3
µ + g′YϕBµ

)
, (27)

which leads to:

(Gµ ⟨ϕ⟩)† (Gµ ⟨ϕ⟩) =
1

4
g2v2

1√
2

(
W 1
µ − iW 2

µ

) 1√
2

(
W 1
µ + iW 2

µ

)
+

1

8
v2
(
−gW 3

µ + 2g′YϕBµ
)2
. (28)

Defining a linear combination W±
µ = 1√

2

(
W 1
µ ∓ iW 2

µ

)
the first term becomes:

1

4
g2v2W+

µ W
−µ = LW , mass , (29)

For a charged vector field, the factor of 1/2 in the normalization of the mass term in the Lagrangian

defined in (1) is omitted, analogously to how a Lagrangian of a complex scalar field is defined. We

therefore read off the mass of theW boson: mW = gv/2. Finding the mass of the Z boson is slightly

less straightforward. The key is to find two orthogonal linear combinations of real vector fields W 3
µ

and Bµ for which the mass matrix is diagonal [16]. Computing the determinant of the mass matrix,

we find:

M =
1

4
v2
(
g2 −gg′

−gg′ g′2

)
, detM = 0 → m2

A = 0 , m2
Z = TrM =

1

4
v2(g2 + g′2) . (30)

Summary 7.1. The physical fields W±
µ , Zµ and Aµ – the photon field – can be written as

linear combinations of the gauge fields we encountered in Equation (10):

• W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, mW =

1

2
gv ,

• Zµ = cos θWW
3
µ − sin θWBµ, mZ =

1

2

(
g2 + g′2

)1/2
v ,

• Aµ = sin θWW
3
µ + cos θWBµ, mA = 0 .

(31)

Here we introduced a new parameter – the weak mixing angle θW [16], defined as:

tan θW =
g′

g
. (32)

The fields W±
µ are complex and therefore charged, while Zµ and Aµ are real, hence neutral.

The photon remains massles after SSB, which is consistent with observations.
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Mass of the Higgs boson. The mass of the Higgs boson is derived by investigating the Higgs potential

given in (9) after the spontaneous symmetry breaking:

V (ϕ) = −µ2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
, ϕ =

(
w+

1√
2
(v + h+ iz)

)
. (33)

We want to isolate the terms that are quadratic in field h:

• ϕ†ϕ =
1

2
(v + h)2 + ... =

1

2
h2 + ...

•
(
ϕ†ϕ

)2
=

1

4
(v + h)4 + ... =

1

4
6v2h2 + ... =

3

2
v2h2 + ...

Putting it all together and keeping in mind that the parameters of the potential are related to the

vev v through Equation (11), we get:

V (ϕ) ⊃ 1

2

(
3v2λ− µ2

)
h2 =

1

2

(
3v2λ− λv2

)
h2 =

1

2
2λv2h2 → mh =

√
2λv .

Residual symmetry and the pattern of symmetry breaking. What exactly has happened to the

symmetry group of the Lagrangian? The non-zero vev of the scalar doublet ⟨ϕ⟩ has non-zero

eigenvalues of the SU(2)L generators, which means the latter are spontaneously broken as T ⟨ϕ⟩ ̸= 0.

The same goes for the U(1)Y invariance. However, the photon is a gauge boson and it is massless,

so there must be some residual U(1) symmetry after the SSB. Looking at the definition of Aµ in

(31), we are inspired to construct a linear combination of T 3 and Y , called the electric charge Q:

Q = T 3 + Y , (34)

for which the lower component of the ϕ doublet has a zero eigenvalue, meaning the U(1)Q symmetry

is not broken by the vev of ϕ. This requirement fixes the hypercharge of the doublet. First we realize

that the eigenvalue of the T 3 generator for the lower component of an SU(2) doublet is t3 = −1/2.

We find Yϕ = +1/2 and note the electroweak symmetry group has been broken down to U(1)Q:

SU(2)L ⊗U(1)Y −→ U(1)Q . (35)

The electroweak Lagrangian. We will discuss the terms relevant to the calculation of the h → γγ

decay, presented in Figure 7. The corresponding Feynman rules, which are summarized in 3.1, will

not be derived explicitly. What follows is a brief outline of some of the key points.

The second term in (13) corresponds to the kinetic terms for the gauge fields. We know from

Section 2.3 that these are of the form: Lpure
gauge = −1

4BµνB
µν − 1

4W
a
µνW

µν
a , where

Bµν = ∂µBν − ∂νBµ , and W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW

b
µW

c
ν . (36)

These fields first need to be mapped to the physical fields defined in (31). Their interactions can

be derived from the terms that are cubic or quartic in the fields. For the propagators, we need to

consider also the gauge boson mass terms in LHiggs. Moreover, because of the gauge invariance, the

propagators cannot be defined unless we introduce the gauge-fixing terms [16] into the Lagrangian:

Lgf = − 1

ξW
|∂µWµ

+ + iξWMWw+|2 −
1

2ξZ
(∂µZ

µ + ξZMZz)
2 − 1

2ξ
(∂µA

µ)2 , (37)

with ξ, ξW and ξZ as the arbitrary gauge parameters [16]. The propagators of the gauge and would-

be-Goldstone bosons are then ξ-dependent. A possible choice of gauge is the unitary gauge, obtained

by setting ξ → ∞. In this limit, the propagators of the would-be-Goldstones vanish and the number

of possible diagrams decreases significantly. For this reason, the calculation of the h → γγ decay

width was performed in the unitary gauge.
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In addition to gauge-fixing terms, quantization of non-abelian gauge theories requires adding

anticommuting scalar fields to the Lagrangian in the form of Lghost. These Fadeev-Popov ghosts are

unphysical fields which are introduced through a mathematical procedure alongside Lgf and restore

unitarity of the S-matrix [12]. After SSB, they aquire a mass and their propagators are of the form:

Propghost =
i

p2 − ξm2
, (38)

which means in unitary gauge, they decouple and do not contribute to the amplitudes. A more

detailed discussion on gauge-fixing and ghosts is available in [12].

Figure 7: The structure of the electroweak Lagrangian.

The Yukawa sector describes the scalar-fermion interactions and after SSB includes the fermion

mass terms. From the principles of gauge invariance we can construct the following [16]:

LYukawa, leptons = −
∑
l

(
hlψ̄l,Lϕ lR + h.c.

)
, (39)

where ψl,L is a SU(2) doublet of l-generation leptons with hypercharge Y = −1/2, ϕ is the scalar

doublet introduced in (12) and lR is an SU(2) singlet with Y = −1. It follows that both terms in (39)

are SU(2)L as well as U(1)Y singlets. After SSB, we obtain the lepton masses: ml = hlv/
√
2 [16],

as well as Higgs-lepton couplings. The introduction of quarks into LYukawa is analogous, although

a bit more intricate, since there are two SU(2)L singlets for each generation, e.g. uR, dR. Unlike

right-handed neutrinos, right-handed down-type quarks are observed in the strong interactions.

The third term in the electroweak Lagrangian can be written as

Lpure
fermion, leptons =

∑
l

(
ψ̄l,Liγ

µDµψl,L + l̄Riγ
µDµlR

)
(40)

for leptons and similarily for quarks. The covariant derivatives are defined as:

Dµψl,L =

(
∂µ + ig

σa

2
W a
µ + ig′YψBµ

)
ψl,L , DµlR =

(
∂µ + ig′YlRBµ

)
lR , (41)

where Yψ = −1/2 and YlR = −1. This leads to the kinetic terms, which combined with the mass

terms in LYukawa give the fermion propagators, as well as the fermion-gauge interactions.

7.1 Comments on higher-order renormalization

We mentioned in Section 4.2 that loop calculations generally lead to divergences, which need to be

treated carefully in order to obtain finite results for the computed observables. This is achieved

through renormalization.

Matrika 12 (2025) 2 15



“output” — 2025/9/28 — 5:04 — page 16 — #16

Lara Krašovec

Because there is no tree-level amplitude contributing to the diphoton decay of the Higgs boson

and the theory is renormalizable, the process is already finite at 1-loop after considering all of the

diagrams. Hence, beyond the usual regularization of loop integrals, no additional counterterms

specific to this vertex are required. To illustrate the underlying workings of renormalization, we

first consider a more general case.

We begin with a bare Lagrangian of the theory, L, written in terms of the bare fields (ϕi) and

parameters (αi), which are not yet renormalized. Loop diagrams evaluated using the Loop diagrams

evaluated with the bare Feynman rules obtained from L diverge in general. These infinities can be

absorbed by introducing renormalized quantities: ϕ = Z
1/2
ϕ ϕR, α = µεZαα, and splitting the bare L

into a renormalized Lagrangian LR, and the counterterm Lagrangian, δLCT, containing divergences:

L(ϕi, ∂µϕi;αi) → L = LR(ϕ
R
i , ∂µϕ

R
i ;α

R
i ) + δLCT . (42)

Here ϕRi and αRi are the renormalized fields and parameters. From LR we extract the renormalized

Feynman rules, while the counterterms in δLCT are fixed by imposing renormalization conditions,

depending on the chosen renormalization scheme. One common choice is the on-shell renormaliza-

tion scheme, where the parameters are fixed to the experimental values of physical observables.

In general, an N -loop amplitude receives contributions from the genuine N -loop 1-particle-

irreducible (1PI) diagrams, as well as from lower k-loop diagrams with counterterm insertions of

total order m, such that k +m = N . This ensures that all UV divergences cancel order by order:

M(0)
ren = M(tree) ,

M(1)
ren = M(1)

1L + δM(1)
CT ,

M(2)
ren = M(2)

2L +M(2)

1L⊕ δ(1)
+ δM(2)

CT ,

M(3)
ren = M(3)

3L +M(3)

2L⊕ δ(1)
+M(3)

1L⊕ δ(2)
+ δM(3)

CT , ...

(43)

with M(N)
NL denoting the genuine N -loop contributions, while the additional terms represent lower-

order diagrams with counterterm insertions. If a tree amplitudeM(tree) exists, there is a contribution

proportional to M(tree) with order-N counterterms; otherwise this pure-CT term is absent.

Now, let’s apply this to the calculation of the h → γγ decay. In renormalizable theories (such

as the SM), all counterterms are of the same form as operators already present in the Lagrangian.

Due to the gauge structure, there is no tree-level hγγ vertex, and therefore no counterterm for

it. Consequently, there is no CT insertion at 1-loop order. The divergences in the genuine 1-loop

contributions cancel amongst themselves, which is a direct consequence of the gauge symmetry and

renormalizability. At 1-loop, there is no need to compute any counterterms explicitly. Implicitly,

we used the renormalized Feynman rules when evaluating the diagrams, with the parameters be-

ing renormalized rather than bare. A renormalization scheme must still be chosen for the input

parameters, but the 1-loop UV finiteness is scheme-independent. Throughout the calculations we

adopt the on-shell renormalization scheme: the parameters (mh,mW , α, g, ...) are identified with

their physical, experimentally measured values.

At 2-loops, things would get more interesting. Besides the genuine 2-loop 1PI diagrams, one

must also include (i) 1-loop diagrams with insertions of 1-loop counterterms in propagators or

vertices, and (ii) external-leg field renormalizations multiplying the 1-loop amplitude. Still, since no

tree-level hγγ operator exists in the SM, there is no pure counterterm diagram contributing directly

to the vertex at any order.
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8 Phenomenology appendices

8.1 Appendix A: Computation of h→ γγ decay width

Here we derive the results presented in Sections 4.2 and 5.1.

W loop. We begin by evaluating the invariant amplitude for theW loop. In unitary gauge, there are

two Feynman diagrams contributing to this process, which are presented in Figure 3. The triangle

diagram corresponds to the following amplitude:

iM1 = 2

ˆ
ddp

(2π)d
(igmW gαβ)

( −i
p2 −m2

W

(
gαγ − pαpγ

m2
W

))
· (−ie)

(
gγλ (2p− k1)µ + gλµ (2k1 − p)γ − gµγ (k1 + p)λ

)
· εµ(k1)

·
( −i
(p− k1)2 −m2

W

(
gλρ − (p− k1)

λ(p− k1)
ρ

m2
W

))
· (−ie)

(
gρδ (2p− 2k1 − k2)ν + gδν (2k2 + k1 − p)ρ + gνρ (k1 − k2 − p)δ

)
· εν(k2)

·
( −i
(p− k1 − k2)2 −m2

W

(
gβδ − (p− k1 − k2)

β(p− k1 − k2)
δ

m2
W

))
=

= 2

ˆ
ddp

(2π)d
N1
µν(

p2 −m2
W

) (
(p− k1)2 −m2

W

) (
(p− k1 − k2)2 −m2

W

)εµ(k1)εν(k2) .

(44)

Diagram 3a is symmetric under the interchange of the two gauge boson vertices, which is accounted

for by having included a factor of 2 in (44) [21]. Next, we write down the amplitude for the bubble:

iM2 =

ˆ
ddp

(2π)d
(igmW gαβ)

( −i
p2 −m2

W

(
gαγ − pαpγ

m2
W

))
·
(
−ie2

)
(2gγδgµν − gγµgδν − gδµgγν) · εµ(k1)εν(k2)

·
( −i
(p− k1 − k2)2 −m2

W

(
gβδ − (p− k1 − k2)

β(p− k1 − k2)
δ

m2
W

))
=

ˆ
ddp

(2π)d
N2
µν(

p2 −m2
W

) (
(p− k1 − k2)2 −m2

W

)εµ(k1)εν(k2) .
(45)

We also note the on-shell conditions for initial and final states, as well as the Ward identities:

(k1 + k2)
2 =2k1 · k2 = m2

h , k21 =k22 = 0 , εµ(k1)k
µ
1 = εν(k2)k

ν
2 . (46)

Simplifying the two numerators N1,2
µν by hand requires a lot of error-prone algebra and perform-

ing the subsequent integration is anything but trivial. Alternatively, it is straightforward to use

a Mathematica package suitable for loop calculations. The results below were computed with

Package-X [20]. The corresponding Mathematica code is available in 2. For the total W boson-

induced amplitude we get:

MW = M1 +M2 =

=
e2g

(4π)2m2
hmW

(
m2
h + 6m2

W − 6m2
W

(
m2
h − 2m2

W

)
C0(0, 0,m

2
h,m

2
W ,m

2
W ,m

2
W )
)

·
(
m2
hg
µν − 2kµ2k

ν
1

)
εµ(k1)εν(k2) ,

(47)

which is in agreement with the result obtained in the 2012 paper by Marciano et al. [21]. In equation

(47) we encounter a scalar Passarino-Veltman function C0, which is defined in [29] as

C0(p
2
1, p

2
2, p

2,m2
1,m

2
2,m

2
3) = 16π2i

ˆ
ddq

(2π)d
1(

q2 −m2
1

) (
(q + p1)2 −m2

2

) (
(q + p1 + p2)2 −m2

3

) (48)
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for p+ p1 + p2 = 0 and can be evaluated analitically given the expression in the paper [21]:

C0(m
2
h, 0, 0,m

2
W ,m

2
W ,m

2
W ) =

−2

m2
h

f

(
4m2

W

m2
h

)
, f(β) =

arcsin2
(
β−1/2

)
, β ≥ 1 ,

−1
4

(
ln 1+

√
1−β

1−
√
1−β − iπ

)2
, β < 1 .

(49)

Using (49) and defining βW = 4m2
W /m

2
h, we rewrite our W-loop amplitude as:

MW =
e2g

(4π)2mW

(
2 + 3βW + 3

(
2βW − β2W

)
f(βW )

)
((k1 · k2)gµν − kµ2k

ν
1 ) εµ(k1)εν(k2) . (50)

Remark 8.1. When comparing the result (47) to (49), the following property of the Passarino-
Veltman function C0 was used: C0(0, 0,m

2
h) = C0(m

2
h, 0, 0), which holds if all of the propaga-

tor poles are equal. In general, C0 is symmetric under cyclic permutations of its arguments.

The individual integrals corresponding to the triangle (M1) and bubble (M2) diagrams contain di-

vergences when evaluated in dimensional regularization. However, these divergences cancel exactly

in the sum, so that the total W-boson contribution MW is finite.

Fermion loop. There is only one diagram for the fermion loop, see Figure 3c. It is symmetric under

the interchange of the two photons, which again yields a factor of two. Since we are dealing with

a closed fermion loop, we take the trace of the propagators and vertices and include a factor of −1

[12]. The corresponding invariant amplitude is then:

iMf = 2

ˆ
dnp

(2π)n
Nf (−1)Tr

[(
−ig

2

mf

mW

)
i
(
/p+mf

)
p2 −m2

f

(−ieQfγµ)

× i
(
/p− /k1 +mf

)
(p− k1)2 −m2

f

(−ieQfγν)
i
(
/p− /k1 − /k2 +mf

)
(p− k1 − k2)2 −m2

f

]
εµ(k1)εν(k2)

= 2

ˆ
dnp

(2π)n
Nf
µν(

p2 −m2
f

)(
(p− k1)2 −m2

f

)(
(p− k1 − k2)2 −m2

f

)εµ(k1)εν(k2) ,
(51)

where Qf is the electric charge of the fermion in units of e and Nf is the color factor, which is 1 for

leptons and 3 for quarks. The on-shell conditions and the Ward identities are the same as defined

in (46). The result was again computed using Package-X (see 3) and is the following:

Mf =
Q2
fe

2gNf

(4π)2mW

m2
f

m2
h

(
−2 +

(
m2
h − 4m2

f

)
C0(0, 0,m

2
h,m

2
f ,m

2
f ,m

2
f )
)

·
(
m2
hg
µν − 2kν1k

µ
2

)
εµ(k1)εν(k2)

=
e2g

(4π)2mW
NfQ

2
f (−2βf (1 + (1− βf )f(βf ))) (k1 · k2gµν − kν1k

µ
2 ) εµ(k1)εν(k2) ,

(52)

where we defined βf = 4m2
f/m

2
h. This amplitude is finite.

Scalar loop. When considering BSM models with charged scalars, two additional diagrams, shown in

Figure 4, contribute to the total amplitude. The Feynman rules are in principle model-dependent,

however the overall vertex and propagator structure can be generalized by considering arbitrary

couplings and masses. The rules can therefore be deduced from the MSSM Lagrangian or found in

the paper [26]. We denote the triple scalar coupling in the units of vev v by Ch∆∆ and write the

amplitudes for the two diagrams:
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iMa = 2

ˆ
dnp

(2π)n
(−iCh∆∆v)

i

p2 −m2
∆

(−iQ∆e(2p− k1)µ)
i

(p− k1)2 −m2
∆

· (−iQ∆e(2p− 2k1 − k2)ν)
i

(p− k1 − k2)2 −m2
∆

· εµ(k1)εν(k2) ,
(53)

iMb =

ˆ
dnp

(2π)n
(−iCh∆∆v)

i

p2 −m2
∆

(
2iQ2

∆e
2gµν

) i

(p− k1 − k2)2 −m2
∆

· εµ(k1)εν(k2) . (54)

Here m∆ and Q∆ correspond to the mass and the charge of ∆+(+). The factor of 2 in Equation (53)

accounts for the symmetry of the first diagram. Using Package-X (see Appendix 8.1) and imposing

the conditions specified in (46) we obtain the finite scalar contribution to the amplitude:

MBSM = Ma +Mb =
2Ch∆∆vQ

2
∆e

2

(4π)2m2
h

(
m2

∆gµν − 2k1νk2µ
)

·
(
1 + 2m2

∆C0(0, 0,m
2
h,m

2
∆,m

2
∆,m

2
∆)
)
εµ(k1)ε

ν(k2) ,

(55)

which can be rewritten as:

MBSM =
Ch∆∆vQ

2
∆e

2

(4π)2m2
∆

β∆ (1− β∆f(β∆)) ((k1 · k2)gµν − k1νk2µ) · εµ(k1)εν(k2) , β∆ =
4m2

∆

m2
h

. (56)

In [1] := << "X`"

Package-X v2.1.1, by Hiren H. Patel

For more information, see the guide

In [2] := onshell = {k1.k1  0, k2.k2  0, k1.k2  mh^2 / 2}

ward = {k1μ  0, k2ν  0}

In [4] := diagramScalar1 =

LoopIntegrate[(-I ChDD v) I (-I Q e (2 p - k1)μ) I (-I Q e (2 p - 2 k1 - k2)ν) I,

p, {p, mH}, {p - k1, mH}, {p - k1 - k2, mH},

Cancel  True] /. onshell /. ward // FullSimplify

Out[4]= 4 ChDD e2 Q2 v

k1ν k2μ PVC0, 0, 1, 0, 0, mh2, mH, mH, mH + PVC0, 0, 2, 0, 0, mh2, mH, mH, mH +

PVC0, 1, 1, 0, 0, mh2, mH, mH, mH + μ,ν PVC1, 0, 0, 0, 0, mh2, mH, mH, mH

In [6] := diagramScalar2 =

LoopIntegrate[(-I ChDD v) I (2 I e^2 Q^2 μ,ν) I, p, {p, mH}, {p - k1 - k2, mH},

Cancel  True] /. onshell /. ward // FullSimplify

Out[6]= -2 ChDD e2 Q2 v μ,ν PVB0, 0, mh2, mH, mH

In [7] := bothDiagramsScalar = 2 diagramScalar1 + diagramScalar2

In [8] := LoopRefine[bothDiagramsScalar, Part  UVDivergent]

Out[8]= 0

In [9] := LoopRefine[bothDiagramsScalar, ExplicitC0  None] // DiscExpand // FullSimplify

Out[9]=

2 ChDD e2 Q2 v -2 k1ν k2μ + mh2 μ,ν 1 + 2 mH2 ScalarC00, 0, mh2, mH, mH, mH

mh2

In [16] := Export["scalar.pdf", EvaluationNotebook[]]

Out[15]=

scalar.pdf

Mathematica Code 1: Computation of the scalar loop amplitude.
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Remark 8.2. It is important to note that when using Package-X for evaluating loop integrals,
an overall factor of i/(4π)2 is omitted from the displayed final results. Furthermore, the
combination of terms 1/ε− γE + log(4π) which arises after the dimensional regularization of
divergent integrals is abbreviated to 1/ε̃ [30].

In [1] := << "X`"

Package-X v2.1.1, by Hiren H. Patel

For more information, see the guide

In [2] := onshell = {k1.k1  0, k2.k2  0, k1.k2  mh^2 / 2}

ward = {k1μ  0, k2ν  0}

In [4] := Wnumerator1 =

Contract[(I) α,β (-I) (α,ϕ - pα pϕ / mW^2) (-I) (ϕ,λ (2 p - k1)μ + λ,μ (2 k1 - p)ϕ -

μ,ϕ (k1 + p)λ) (-I) (λ,ρ - (p - k1)λ (p - k1)ρ / mW^2) (-I)

(ρ,δ (2 p - 2 k1 - k2)ν + δ,ν (2 k2 + k1 - p)ρ + ν,ρ (k1 - k2 - p)δ) (-I)

(β,δ - (p - k1 - k2)β (p - k1 - k2)δ / mW^2)] /. onshell /. ward // FullSimplify

In [5] := Wnumerator2 =

Contract[(I) α,β (-I) (α,ϕ - pα pϕ / mW^2) (-I) (2 ϕ,δ μ,ν - ϕ,μ δ,ν - δ,μ ϕ,ν) (-I)

(δ,β - (p - k1 - k2)δ (p - k1 - k2)β / mW^2)] /. onshell /. ward // FullSimplify

In [6] := Wdiagram1 = LoopIntegrate[Wnumerator1, p, {p, mW}, {p - k1, mW},

{p - k1 - k2, mW}, Cancel  True] /. onshell /. ward // FullSimplify

In [7] := Wdiagram2 =

LoopIntegrate[Wnumerator2, p, {p, mW}, {p - k1 - k2, mW}, Cancel  True] /. onshell /.

ward // FullSimplify

In [8] := Wbothdiagrams = (2 Wdiagram1 + Wdiagram2 ) // FullSimplify

Out[8]=
1

2 mW4
8 mW2 k1ν k2μ 4 mW

2 PVC0, 0, 0, 0, 0, mh2, mW, mW, mW +

mh2 + 2 (-1 + ) mW2 PVC0, 0, 1, 0, 0, mh2, mW, mW, mW +

PVC0, 0, 2, 0, 0, mh2, mW, mW, mW + PVC0, 1, 1, 0, 0, mh2, mW, mW, mW +

μ,ν -mW
2 PVA[0, mW] +  PVA[1, mW] - mh4 PVB0, 0, mh2, mW, mW -

2 2 mW2 mh2 + (-1 + ) mW2 PVB0, 0, mh2, mW, mW + mh2

mh2 + 2 mW2 PVB0, 1, mh2, mW, mW + 8 mW4 PVC0, 0, 0, 0, 0, mh2, mW, mW, mW +

8 mW2 mh2 + 2 (-1 + ) mW2 PVC1, 0, 0, 0, 0, mh2, mW, mW, mW

In [9] := LoopRefine[Wbothdiagrams, Part  UVDivergent]

Out[9]= 0

In [10] := LoopRefine[Wbothdiagrams, ExplicitC0  None] // DiscExpand // FullSimplify

Out[10]=

2 k1ν k2μ - mh2 μ,ν -mh2 - 6 mW2 + 6 mW2 mh2 - 2 mW2 ScalarC00, 0, mh2, mW, mW, mW

mh2 mW2

In [12] := Export["Wboson_new.pdf", EvaluationNotebook[]]

Ou t [ ] =

Wboson.pdf

Mathematica Code 2: Notebook with evaluated amplitude for the W loop.

Remark 8.3. In the case of copying any of the provided code into Mathematica, subscripted
indices will not be treated properly due to the limitations of Mathematica code listing in
LaTeX. Subscripts should therefore be inserted manually.
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In [1] := << "X`"

Package-X v2.1.1, by Hiren H. Patel

For more information, see the guide

In [2] := onshell = {k1.k1  0, k2.k2  0, k1.k2  mh^2 / 2}

ward = {k1μ  0, k2ν  0}

In [4] := FNumerator = 2 Spur[(-I) I (p.γ + mf ), (-I γμ),

I (p.γ - k1.γ + mf ), (-I γν), I (p.γ - k1.γ - k2.γ + mf )] // FullSimplify

Out[4]= 8 mf k1ν (k2μ - 4 pμ) - 2 pμ (k2ν - 2 pν) +

k1μ (2 k1ν + k2ν - 2 pν) + mf2 - k1.k1 - k1.k2 + 2 k1.p - p.p μ,ν

In [5] := Fdiagram = LoopIntegrate[FNumerator, p, {p, mf}, {p - k1, mf},

{p - k1 - k2, mf}, Cancel  True] /. onshell /. ward // FullSimplify

Out[5]= 8 mf k1ν k2μ

PVC0, 0, 0, 0, 0, mh2, mf, mf, mf + 4 PVC0, 0, 1, 0, 0, mh2, mf, mf, mf + PVC0,

0, 2, 0, 0, mh2, mf, mf, mf + PVC0, 1, 1, 0, 0, mh2, mf, mf, mf -

4 mf μ,ν 2 PVB0, 0, mh2, mf, mf + mh2 PVC0, 0, 0, 0, 0, mh2, mf, mf, mf -

8 PVC1, 0, 0, 0, 0, mh2, mf, mf, mf

In [6] := LoopRefine[Fdiagram, Part  UVDivergent]

Out[6]= 0

In [7] := LoopRefine[Fdiagram, ExplicitC0  None] // DiscExpand // FullSimplify

Out[7]=

4 mf 2 k1ν k2μ - mh2 μ,ν -2 + -4 mf2 + mh2 ScalarC00, 0, mh2, mf, mf, mf

mh2

In [9] := Export["fermion.pdf", EvaluationNotebook[]]

Out[8]= fermion.pdf
Mathematica Code 3: Mathematica notebook for the fermion loop.

Decay width. We wish to calculate the decay width for an unpolarized two-body decay given by:

ΓA→12 =
|p⃗f |

32π2m2
A

ˆ
|M|2dΩ. (57)

First, we recall the expression for the invariant amplitude (15) and compute its complex conjugate:

• M =
e2g

(4π)2mW
F (k1 · k2gµν − kν1k

µ
2 ) εµ(k1)εν(k2)

• M∗ =
e2g

(4π)2mW
F ∗ (k1 · k2gρσ − kσ1 k

ρ
2) ε

∗
ρ(k1)ε

∗
σ(k2) ,

(58)

which leads to the sqared amplitude averaged over all photon polarizations:

|M|2 = e4g2

(4π)4m2
W

|F |2
(
m2
h

2
gµν − kµ2k

ν
1

)(
m2
h

2
gρσ − kρ2k

σ
1

)∑
pol.

ε∗ρ(k1)εµ(k1)
∑
pol.

ε∗σ(k2)εν(k2) . (59)

Here we recalled the on-shell relation k1 ·k2 = m2
h/2. We can replace the sums over external photons:

∑
pol.

ε∗µεν → −gµν , (60)

which after expressing the prefactor in terms of the Fermi and fine-structure constants leads to
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|M|2 = |F |2
( α
4π

)2 8GF√
2

(
m2
h

2
gµν − kµ2k

ν
1

)(
m2
h

2
gρσ − kρ2k

σ
1

)
(−gρµ) (−gσν) =

= |F |2
( α
4π

)2 8GF√
2

(
m4
h

4
− m2

h

2
2k1 · k2 + k21k

2
2

)
=

= |F |2
( α
4π

)2 8GF√
2

m4
h

2
= |F |2

( α
4π

)2 4GF√
2
m4
h .

(61)

Now we can use equation (57) to calculate the decay width. Since the squared amplitude has no

angular dependance, it is trivial to integrate it over the solid angle:

ˆ
dΩ|M|2 = |M|2 1

2
· 4π . (62)

We need to be careful to include a factor of 1/2 which arises due to the fact that the two final states

are identical. The integration limits are therefore

ˆ π/2

0
dθ

ˆ 2π

0
dϕ and not

ˆ π

0
dθ

ˆ 2π

0
dϕ . (63)

Hence we get:

Γh→γγ =
|p⃗γ |

32π2m2
h

2π|M|2 . (64)

Lastly, the magnitude of the massless final state momentum |p⃗γ | can be expressed in the center-of-

mass system as |p⃗γ | = mh/2. We arrive at the final result:

Γh→γγ =
m3
hGF

8
√
2π

( α
4π

)2
|F |2 . (65)

8.2 Appendix B: Finding the parameter constraints
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Figure 8: Predicted signal strengths at different values of mass m∆ in the case of positive (+1) and
negative (−1) coupling for the singly and doubly charged scalars. The gray shaded area represents
the experimental value.

The parameters were constrained by evaluating the following function for the each set of parameters:

χ2(m∆, Ch∆∆) =

(Oexp −Opred(m∆, Ch∆∆)

σ

)2

, (66)
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where Oexp and Opred are the measured and the predicted values of an observable and σ is the

experimental uncertainty. Expression (66) corresponds to the reduced χ2 statistic, which is used in

goodness-of-fit testing. The lower the value of χ2, the better the fit. For a two-parameter fit like in

our case, 1σ confidence level (68.3% probability) equals to χ2 = 2.30. This means that for the sets

of parameters in the darker shaded regions in figure 5, the value of χ2 is lower than that.

Some helpful insight into the behaviour of BSM corrections can be gained by examining Figure

8. As the mass increases, BSM effects become negligeable for these values of the coupling. Again,

negative coupling seems to be in better agreement with the data.
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