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PROBING HADRON PROPERTIES WITH SCATTERING

MARKO MALEŽIČ

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

An important study in quantum mechanics is the study of scattering. By employing scattering, it is possible to
find new states that can be bound or short-lived. In this paper, We will formally derive the scattering amplitude
for scattering on the potential and express it with a phase shift. Although this approach is quite restrictive, it still
produces important results. It renders information on the interaction between particles and reveals properties of bound
states and resonances. After the theoretical formalism, We will give some examples of states studied numerically and
experimentally. Although scattering is present in many fields of physics, We will focus on examples from hadron
particle physics.

RAZKRIVANJE HADRONSKIH LASTNOSTI PREKO SIPANJA

Pomemben del kvantne mehanike je raziskava sipanja. Preko uporabe sipanja kot orodja, je možno najti nova
stanja, ki so lahko vezana ali kratkoživa. V tem članku, bomo formalno izpeljali sipalno amplitudo za sipanje na
potencialni jami in jo zapisali preko faznega zamika. Čeprav je pristop omejevalen, prinese s seboj nekaj pomembnih
rezultatov. Razkrije informacijo o interakciji med delci in prikaže lastnosti vezanih stanj ter resonanc. Po teoretičnem
formalizmu bomo podali nekaj primerov stanj, ki jih lahko študiramo numerično in eksperimentalno. Čeprav je sipanje
prisotno v skoraj vseh območjih fizike, se bomo osredotočili na primere iz hadronske fizike delcev.

1. Introduction

Scattering is a valuable tool in physics. It is present in many areas of physics, like optics, solid

state, and particle physics. Since scattering is a process of interaction between a particle and some

medium, it depends on the types of particles and mediums. In optics, the particle is light, and its

medium is the lens. The particle might be a phonon in solid-state physics, and the medium is the

crystalline lattice. Finally, in particle physics, the medium is also a particle, and the scattering of

two particles can produce new states.

The research on scattering in quantum mechanics starts with the time-dependent Schrödinger

equation. There are many approaches to solving it. A simple way is to expand the particle wave

into a spherical wave far away from the scattering center. The only difference between the spherical

incoming and outgoing waves is the phase shift δ, which contains the interaction information. From

this, we can calculate the scattering amplitude and find the relation between the phase shift δ and

the scattering matrix S. This approach to scattering has been very useful in particle physics. It has

contributed to our understanding of hadrons and their interactions.

The scattering amplitude renders valuable information on the properties of states. We will argue

that states are related to the poles of the scattering amplitude that is expressed in terms of energy.

We have to define a boundary in the spectrum, the threshold. Consider the scattering of two non-

relativistic particles with masses m1 and m2. The system’s energy is defined by the masses of the

particles: W = (m1+m2)c
2+E, where E is the kinetic and potential energy. The threshold is then

defined as E = 0. If the pole energy is below the threshold (E ≤ 0), the state is bound and it doesn’t

decay. Examples of bound states would be the proton or deuterium (bound proton and neutron).

However, if the pole energy is above the threshold (E ≥ 0), the new state is called a resonance, and

it decays. There are many resonances in particle physics, and more are being discovered. Currently,

exciting new hadronic states are called exotic and are believed to be made from four (tetraquark)

or five valence quarks (pentaquark). These states can be studied either experimentally (through

particle colliders and detectors) or numerically (through the discretization of space-time).
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2. Scattering formalism

To understand the experimental and numerical results, let us first establish a formal understanding

of scattering. Consider the scattering of a plane wave on a finite potential. Our approach will be to

start with the spherical wave expansion of the particle wave, from which we’ll derive the scattering

amplitude. This will be convenient for the investigation of bound and unbound states ([1], [2]).

Before we start, let us assume the interaction potential has a finite range (Figure 2), which lets

us expand the wave far from the interaction. In the formalism, elastic scattering is also assumed,

which means that the probability flux is conserved. We should note that with all of these assump-

tions, this approach falls short in correct studies of more complex processes. However, it is a good

representation of scattering and gives a few important results.

Figure 1. Spherical wave expansion. The wave vector k⃗ is
pointing to a differential solid angle dΩ.

In the first step, initial and final states are

expanded into spherical waves using the Leg-

endre polynomials Pl (Figure 1). Far from the

scattering center, the final state must be de-

scribed by an outgoing spherical wave. The

conservation of probability implies that the ab-

solute values of pre-factors for ingoing and out-

going waves must be equal. They can only dif-

fer by the phase factor, which is denoted by

Sl = exp(2iδl). Since this is the only difference,

it must contain information about the interac-

tion,

ψi =
1√
V
eikz =

1√
V

i

2kr

∑
l

(2l + 1)
[
(−1)le−ikr − eikr

]
Pl(cos θ), (1)

ψf =
1√
V

i

2kr

∑
l

(2l + 1)
[
(−1)le−ikr − Sle

ikr
]
Pl(cos θ), (2)

Figure 2. Sketch of the solution ψ(r) inside and outside
the potential V (r).

We’ve introduced the phase shift δl. Since it

will be useful in studying bound states, let us

look at how it impacts the wave function. Far

from the scattering center (kr ≫ 1) and outside

a general potential, the equation (2) has the fol-

lowing asymptotic expansion (3)1,

ψ(r) ∼ 1

r
sin(kr + δl). (3)

With our focus being on scattering, it is bet-

ter to write the final state as a sum of the initial

plane wave (1) and a scattered spherical wave.

This form lets us continue the formalism through

the use of the scattering amplitude A(θ),

ψf =
1√
V

(
eikz +A(θ)eikr/r

)
, A(θ) =

1

k

∑
l

(2l + 1)flPl(cos θ). (4)

1In general, the function has the form of Bessel functions.

2 Matrika 10 (2023) 2



“output” — 2023/9/24 — 11:42 — page 3 — #3

Probing hadron properties with scattering

The amplitude A contains the term fl, which can be found by comparing the final state ψf in both

forms (2, 4). The form (5) is useful for further analysis of the scattering,

fl =
e2iδl − 1

2i
. (5)

Let us now determine the relation between the scattering amplitude and the cross section,

which is an observable quantity, for spinless particles. On the one hand, we know the flux of

scattered particles Φf can be calculated from the probability the scattered particle passes through

the differential solid angle dΩ (Figure 1),

dΦf = ρfvdS =
1

V
v|A(θ)|2dΩ, (6)

where ρf = |ψout|2 = |A(θ)|2/r2 is the probability density of the outgoing wave term in (4), v the

velocity of the particle, and dS = r2dΩ. On the other hand, the same flux is proportional to the

cross section σ, which is observable, Φf = jiσ(i → f), where ji = v/V is the flux of incoming

particles. Combining this equation with (6), a relation between the differential cross section and

the scattering amplitude can be found2,

dσ

dΩ
= |A(θ)|2. (7)

To get the total cross section, the differential cross section has to be integrated (7) over the solid

angle Ω. The only dependence on Ω is present in the Legendre polynomials Pl(cos θ). By employing

the orthogonality of Pl the integral is found to be,
∫
Pl(cos θ)Pl′(cos θ)dΩ = 4πδll′/(2l + 1). Using

this result, we calculate the final result for the cross section as

σ =
4π

k2

∑
l

(2l + 1)

∣∣∣∣e2iδl − 1

2i

∣∣∣∣2 = 4π

k2

∑
l

(2l + 1) sin2 δl. (8)

3. Scattering on a potential well

We will examine a case of scattering on a potential well in three dimensions, which is a useful

approximation for specific types of interactions. Its study leads to a better understanding of the

nuclear force [5].

Figure 3. Sketch of the solution (9) with a representa-
tion of the potential V (r) and positive energy E.

Since we will restrict ourselves to scattering at

low energies, it is enough to expand our states using

only l = 0. With this assumption, the solution can

be easily found inside and outside the potential by

using (2, 3). Another way would be to solve the

Schrödinger equation,

u(r) =

{
A sin qr, r ≤ R

B sin(kr + δ0), r ≥ R
, (9)

q2 = 2mr(E + V0),

k2 = 2mrE.

2A better understanding of the formalism behind cross section is given in [4].
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Since u(r) in eq. (9) has to be continuous and continuously derivative at r = R, we can derive the

phase shift for a finite potential well. Dividing equations u(R) = A sin qR = B sin(kR + δ0) and

u′(R) = qA cos qR = kB cos(kR+ δ0), results in an expression for δ0

δ0 = arctan

(
k

q
tan qR

)
− kR+ nπ, n ∈ Z. (10)

From the equation (10) it is clear to see the interaction information in δ0, since its parameters are

the well depth V0 (inside q) and width R.

With a formal expression for the phase shift, the cross section can now be calculated, since

that’s what is measured in the experiment. The first step is to calculate sin δ0 from the cross section

expansion (8). In the low energy range, both the tangent and the sine functions can be expanded

using a Taylor series, sinx = arctanx = x+O(x3), which leaves us with the following form,

sin δ0 = k

(
1

q
tan qR−R

)
= ka, (11)

a =
1

q
tan qR−R, (12)

where the scattering length a was introduced, which is used in the low-energy region. The scattering

length is also related to the geometrical cross-section. Inserting this result (11, 12) into the cross

section (8) the relation between it and the scattering length a is found to be

σ = 4πa2. (13)

4. Proton-neutron scattering and deuterium

Let us use the knowledge gained from the phase shift formalism as an example. We would like

to explore the properties of deuterium, a bound state containing one proton and one neutron, by

scattering protons and neutrons (a representation is shown in Figure 4). To determine deuterium’s

potential properties (V0, R), experimental data on its binding energy Ev and the cross section σ is

needed.

Figure 4. The scattering of a proton and a neutron
produces deuterium, which decays back into the original
nucleons.

Deuterium is a similar system to the one dis-

cussed in the previous section. The only difference

being that the energy is negative (E ≤ 0). The so-

lution to this Schrödinger equation is also similar,

except that the function outside the well exponen-

tially falls to zero [5]. In this system, we need to be

careful with the momenta k and q. The momen-

tum outside the well k is imaginary, which is the

cause of the exponential. Using the same boundary

conditions as we did with scattering, the second re-

lation needed to calculate the potential is found to

be,

1

q
tan qR = − 1

|k|
; k = i

√
2m|E|, q =

√
2m(V0 − E). (14)

The complex momenta also lead to the scattering amplitude having poles in the negative region.

Applying k to the equation (4) poles are found at the bound state mass, S(mb) = ∞.
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Figure 5. Proton-neutron scattering
cross section’s dependency of energy. σ
is almost constant for low energy but
starts decreasing around E = 200 eV.
The figure was constructed with data
from [6]

We have to take into account the fact that nucleons have

spin, which affects the potential. Each nucleon has spin J = 1/2,

making their new state deuterium either a singlet (spin J = 0)

or a triplet (spin J = 1). It turns out that the bound state is the

triplet, while the singlet doesn’t form a bound state because its

potential is weaker. The addition of spins also leads to separate

cross sections. The average cross section is then the sum of both

parts weighted by the probability of measuring one state or the

other (15),

σ =
1

4
σs +

3

4
σt. (15)

The triplet is three times as likely to be measured since there are three possible projections of spin

(J3 = −1, 0, 1), while the singlet only has one (J3 = 0). The energy dependence of the average cross

section for proton-neutron scattering is shown in Figure 5.

With the experimental results for separate cross sections (σs, σt) and the binding energy Eb,

we now have everything we need to describe deuterium’s potential. The well depth needs to be

determined for the singlet (Vs) and triplet (Vt) and assuming they both have the same width R,

the full potential can be calculated. We have to stress that the calculation works for low scattering

energies and for this simple form of the potential. First, the binding energy has to be measured

Eb = −2.2 MeV and an experiment scattering polarized particles measures different cross sections,

which leads us to calculate the scattering lengths as and at by use of (13). Finally, combining

equations (12) for different spins and (14) leads us to calculate Vs, Vt and R [5]. Results are shown

in Table 1.

J σ [b] a [fm] V [MeV] R [fm]

0 67 23.67 23.4 2.02
1 5 -5.40 36.2 2.02

Table 1. Experimental results for deuterium with different spins J . σ - cross section, a - scattering length, V - potential
depth, R - potential width

Since bound states have negative energy, they can’t be produced through scattering. Nonethe-

less, scattering still provides enough information to construct a good understanding of the bound

state, as shown in the example. It is interesting to study bound states theoretically, where negative

energy is technically allowed.

5. Resonances - ρ meson

We used the scattering formalism to explore bound states. Let us now focus on the spectrum above

the threshold energy, where additional poles can be found in the scattering amplitude. These poles

correspond to metastable particles, which can be observed. They are responsible for peaks in the

cross section. Determining the extremes of the cross section (8) leads to the phase shift condition

δRl = δl(ER) = π/2. This is called a resonance, and ER is therefore the resonance energy. Our

goal is to understand the dependence of the cross section on the energy around the maximum. It is

convenient to express fl (5) in terms of cot δl and expand it with a Taylor series [3],

fl =
i

1− e2iδl
=

1

cot δl − i
,

cot δl ≈ cot δl(ER) + (E − ER)

[
d

dE
cot δl(E)

]
E=ER

. (16)
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The first term in (16) vanishes since δl(ER) = π/2 and resonance width Γ is introduced. Using the

new parametrization, we can express δl (shown in the upper graph in Figure 6) and fl as

cot δl ≈ −2(E − ER)

Γ
, Γ/2 = −

[
d

dE
cot δl(E)

]
E=ER

, (17)

fl ≈
Γ/2

(E − ER)− iΓ/2
(18)

Figure 6. Breit-Wigner resonance curves for the phase shift
(17) (above) and the cross section (19) (below).

The parameter Γ can be interpreted as the

width of the distribution, similar to the stan-

dard deviation of the Gaussian function. Since

the intermediate state is unstable, the reso-

nance width can be related to the decay time

through the Planck constant, τ = ℏ/Γ. Ex-

pressing the cross section (7) with the approx-

imation for fl (18), we find the expression for

the Breit-Wigner resonance curve. It describes

the behavior of the cross section around the

resonance energy (shown in the lower graph in

Figure 6). Since the resonance has a defined

spin and parity, only one partial wave l domi-

nates near resonance energy,

σl ≈ 4π

k2
(2l + 1)

Γ2/4

(E − ER)2 + Γ2/4
(19)

After acquiring the necessary knowledge to study resonances, let us now look at an example.

We’ll analyze one of the simplest resonances, the meson ρ(770). This resonance is one of the easiest

to investigate theoretically since it is far away from the inelastic region, where our formulation of

scattering becomes less reliable. Furthermore, only the p-wave (l = 1) is used in the series, since

both pions (π) have spin J = 0, while ρ has spin J = 1. A similar but more difficult study would

be the f0(500) (also known as σ) and a strange K∗(892) resonance.

Figure 7. ρ resonance through the scattering of two
pions π.

The ρ meson decays almost exclusively into two

pions π, implying that it can be created through

the scattering of two pions as well. A representa-

tion of such a scattering at the quark level is shown

in Figure 73. Two experimental results are shown

in Figure 8 and present a clear Breit-Wigner reso-

nance curve for phase shifts (17) and the cross sec-

tion (19). Fitting the curves to the data resulted

in the parameters for ρ. Both experiments found a

similar result,

M δ
ρ = 775± 4MeV, Γδ

ρ = 160± 10MeV,

Mσ
ρ = 775.1± 0.7MeV, Γσ

ρ = 147± 1.5MeV.

3Experimentally, however, it is easier to scatter more stable particles, which produce the ρ resonance.
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Figure 8. Experimental results in the study of the ρ resonance. The dependence of phase shift for l = 1 (left) [7] and
the cross section (right) [8] on energy. Both graphs show a characteristic Breit-Wigner resonance curve, similar to
Figure 6.

Theoretically, we also have to study resonances through scattering, since they aren’t stable. To

achieve this, numerical methods are employed, which use quantum field theory on a lattice4. The

approach is quite versatile, since the parameters of this method are the same as the parameters of

the fundamental theory. This means we can compare numerical results with the experiment and

study results with different parameters. This was done in the paper researching the ρ resonance

through quantum chromodynamics on the lattice, which is the only way to study the problem

without perturbative expansion [9]. One of their results is the graph in Figure 9.

Figure 9. A theoretical study of ρ resonance. The graph
shows the Breit-Wigner resonance curves for the phase
shift. Different colored lines represent different quark
masses, where the red line represents the physical mass.
Instead of quark masses, corresponding pion masses are
presented (mq ∝ m2

π) [9].

It shows the phase shift as a function of energy for

different u and d quarks. The red line corresponds

to the quark masses in Nature. Using the physically

correct mass, the paper finds the numerical result

corresponds with the experimental data,

Mρ = 769± 19MeV

Γρ = 129± 7MeV

As can be seen from Figure 9, the method allows for

the study of non-physical parameters, which is use-

ful when more complex particles are investigated.

6. Exotic particles

Figure 10. Scattering of two J/ψ,
leads to an intermediate fully charm-
ing tetraquark X(6900).

So far, we discussed conventional hadrons, which consist of two

or three valence quarks, using the ρ meson as an example. How-

ever, a captivating and recent area of research in particle physics

is focused on examining exotic hadrons. Exotic hadrons are made

up of more than three constituent quarks (tetraquarks and pen-

taquarks) and maybe valence gluons (hybrid hadrons). The dis-

covered particles are either resonances or shallow bound states.

These have been discovered experimentally, but they are not yet

fully understood theoretically.

4The underlying fundamental theory of hadrons is quantum chromodynamics.
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Figure 11. Candidates for the fully charm-
ing tetraquark as a function of the invariant di
J/ψ mass. Around 6900 MeV the collaboration
found a peak, which corresponds to the X(6900)
tetraquark resonance [10].

One such exotic particle is a tetraquark made up

of four charm quarks (cccc), called the fully charming

tetraquark X(6900). To form such a particle, one can

scatter two particles made from two charm quarks (cc),

called J/ψ. This tetraquark was discovered at the LHCb

experiment in 2020 at CERN5. The proton-proton colli-

sions at the LHC gave rise to the J/ψ scattering process

sketched in Figure 10 as one of many possible interme-

diate processes. From the dataset, they counted the

number of such processes as a function of the invari-

ant di-J/ψ mass6 (refer to Figure 11). X(6900) wasn’t

the only resonance discovered, but it was the easiest to

determine. After fitting the Breit-Wigner curve, they

found the following resonance parameters for X(6900),

M [X(6900)] = 6905± 11± 7MeV,

Γ[X(6900)] = 80± 19± 33MeV.

Figure 12. Scattering a proton p+
and a J/ψ meson creates a reso-
nance pentaquark P+

c .

Another recently discovered exotic resonance is a pentaquark.

In particular, the discovered pentaquark Pc composed of u u d c

c quarks, can be created by scattering protons and J/ψ mesons as

shown in Figure 12. The LHCb collaboration discovered it in 2015

and explored its properties [11]. A similar approach to analyzing

the data was used as with the tetraquark. The data showed three

peaks, corresponding to three different P+
c states (refer to Figure 13).

Since two peaks were close together, fitting a mixture of Breit-Wigner

curves was necessary to determine their mass and width. Results for

P+
c properties are presented in Table 2.

State M [MeV] Γ [MeV]

P+
c (4312) 4311.9± 0.7+6.8

−0.6 9.8± 2.7+3.7
−4.5

P+
c (4440) 4440.3± 1.3+4.1

−4.7 20.6± 4.9+8.7
−10.1

P+
c (4457) 4457.3± 0.6+4.1

−1.7 6.4± 2.0+5.7
−1.9

Table 2. Experimental results for different states of P+
c as seen in Figure 13. [11]

It is hard to study exotic particles theoretically because these two types of exotic particles have

many decay channels. To correctly extract their properties theoretically, a much more complex

formalism of inelastic scattering is needed.

In the last two decades, around 30 exotic hadrons have been discovered. Some of them have also

been reliably studied and understood theoretically. As further research is conducted in this field,

others are soon to follow.

5This discovery was later confirmed by the ATLAS and CMS collaborations.
6The invariant mass is an important quantity, when discussing inelastic scattering. It is the portion of the total

mass of the system of objects that is independent of the overall motion of the system.
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Figure 13. Candidate distribution as a function of mpJ/ψ, with fits to three Breit-Wigner resonance curves. The fits
determine the P+

c masses and widths [11].

7. Conclusions

Scattering is employed as a tool in many fields of physics, and its study leads to a better under-

standing of Nature. It is possible to solve scattering problems in quantum mechanics through the

phase shift formalism. The formalism expresses results in terms of the phase shift, which is repre-

sented in the phase of the particle-wave far from the scattering center. Though a few assumptions

need to be made, such an approach leads to important results. We focused on exploring these

results in hadron physics. The first result was a qualitative description of bound states in relation

to the properties of the binding potential. A simple but important example of this is the study

of deuterium. The second result was a study of the scattering amplitude around the cross section

maximum. This provides the Breit-Wigner resonance curve, which can be used to fit data. The

fitted parameters correspond to mass and decay time. A simple example of a resonance is the ρ

meson. Recent research in experimental particle physics has discovered new exotic particles that

differ from conventional hadrons in the number of valence quarks and gluons. This area of hadrons

has not been fully explored experimentally and theoretically, but more research will soon lead to a

better understanding of these particles.
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